Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries

被引:56
|
作者
Boyanov, S. [1 ]
Annou, K. [1 ]
Villevieille, C. [1 ]
Pelosi, M. [1 ]
Zitoun, D. [1 ]
Monconduit, L. [1 ]
机构
[1] Univ Montpellier 2, CNRS, ICG AIME, Montpellier, France
关键词
transition metal phosphide; nanoparticles; nanostructuration; Li ion battery;
D O I
10.1007/s11581-007-0170-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the Li-ion technology, the diffusion of Li in the electrode is often limited by the quality of interfaces. Two synthetic approaches are proposed to develop the transition metal phosphides (TMP)/electrolyte interface. The first route consists in the preparation of nickel nanopowder by solution phase synthesis, and the second is based on the electrochemical synthesis of nickel nanorods in a template followed by vaporization of phosphorous. In the former, the nanosized metallic particles are foreseen to be used as starting nanomaterial to directly react with phosphorous agents (P or Li3P) during the cycling of the lithium battery. A preliminary electrochemical test of the NiP (x) nanorods/Li half-cell shows the feasibility of the use of such nanostructured TMP electrode in a Li battery.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [21] Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning
    Li, Weihan
    Zeng, Linchao
    Wu, Ying
    Yu, Yan
    SCIENCE CHINA-MATERIALS, 2016, 59 (04) : 287 - 321
  • [22] Liquid Metal Electrode Ink for Printable Lithium-Ion Batteries
    Ozawa, Yuta
    Nishitai, Yuuki
    Ochirkhuyag, Nyamjargal
    Usami, Natsuka
    Kanto, Moeka
    Ueno, Kazuhide
    Ota, Hiroki
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (11)
  • [23] Metal Alloy Electrode Configurations For Advanced Lithium-Ion Batteries
    Hassoun, J.
    Panero, S.
    Scrosati, B.
    FUEL CELLS, 2009, 9 (03) : 277 - 283
  • [24] The influence of nanostructured carbon additives to the functional electrode characteristics of lithium-ion batteries
    Tashenov, A. K.
    Omarova, N. M.
    Belgibayeva, D. S.
    Itkis, D. M.
    Krivchenko, B. A.
    BULLETIN OF THE UNIVERSITY OF KARAGANDA-CHEMISTRY, 2018, (89): : 32 - 35
  • [25] High thermal conductivity negative electrode material for lithium-ion batteries
    Maleki, H
    Selman, JR
    Dinwiddie, RB
    Wang, H
    JOURNAL OF POWER SOURCES, 2001, 94 (01) : 26 - 35
  • [26] Safety aspects of graphite negative electrode materials for lithium-ion batteries
    Joho, F
    Novák, P
    Spahr, ME
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) : A1020 - A1024
  • [27] A new form of manganese carbonate for the negative electrode of lithium-ion batteries
    Jose Aragon, Maria
    Leon, Bernardo
    Perez Vicente, Carlos
    Tirado, Jose L.
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2863 - 2866
  • [28] Investigation of CVD multilayered graphene as negative electrode for lithium-ion batteries
    Saulnier, Mathieu
    Trudeau, Charles
    Cloutier, Sylvain G.
    Schougaard, Steen B.
    ELECTROCHIMICA ACTA, 2017, 244 : 54 - 60
  • [29] Studies of LaSn3 as a Negative Electrode for Lithium-Ion Batteries
    Vaughey, J. T.
    Thackeray, M. M.
    Shin, D.
    Wolverton, C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (07) : A536 - A540
  • [30] α-TiPO4 as a Negative Electrode Material for Lithium-Ion Batteries
    Luchinin, Nikita D.
    Aksyonov, Dmitry A.
    Morozov, Anatoly, V
    Ryazantsev, Sergey, V
    Nikitina, Victoria A.
    Abakumov, Artem M.
    Antipov, Evgeny, V
    Fedotov, Stanislav S.
    INORGANIC CHEMISTRY, 2021, 60 (16) : 12237 - 12246