On the number of distinct values of a class of functions over a finite field

被引:8
作者
Coulter, Robert S. [1 ]
Matthews, Rex W. [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
Planar functions; Value sets; Dembowski-Ostrom polynomials; HADAMARD DIFFERENCE SETS; ORDER; PRESEMIFIELDS; POLYNOMIALS; PLANES;
D O I
10.1016/j.ffa.2010.12.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several authors have recently shown that a planar function over a finite field of order q must have at least (q + 1)/2 distinct values. In this note this result is extended by weakening the hypothesis significantly and strengthening the conclusion. We also give an algorithm for determining whether a given bivariate polynomial phi(X, Y) can be written as f(X + Y) - f(X) - f(Y) for some polynomial f. Using the ideas of the algorithm, we then show a Dembowski-Ostrom polynomial is planar over a finite field of order q if and only if it yields exactly (q + 1)/2 distinct values under evaluation; that is, it meets the lower bound of the image size of a planar function. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 224
页数:5
相关论文
共 13 条
[1]  
Cavior S., 1964, P AM MATH SOC, V15, P175
[2]   Commutative presemifields and semifields [J].
Coulter, Robert S. ;
Henderson, Marie .
ADVANCES IN MATHEMATICS, 2008, 217 (01) :282-304
[3]   The classification of planar monomials over fields of prime square order [J].
Coulter, Robert S. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) :3373-3378
[4]   Bent polynomials over finite fields [J].
Coulter, RS ;
Matthews, RW .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (03) :429-437
[5]  
COULTER RS, 1997, CODES CRYPTOGR, V10, P167
[6]   PLANES OF ORDER N WITH COLLINEATION GROUPS OF ORDER N2 [J].
DEMBOWSKI, P ;
OSTROM, TG .
MATHEMATISCHE ZEITSCHRIFT, 1968, 103 (03) :239-&
[7]   A family of skew Hadamard difference sets [J].
Ding, Cunsheng ;
Yuan, Jin .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) :1526-1535
[8]   A NOTE ON PERMUTATION POLYNOMIALS AND FINITE GEOMETRIES [J].
GLUCK, D .
DISCRETE MATHEMATICS, 1990, 80 (01) :97-100
[9]   A CONJECTURE ON AFFINE PLANES OF PRIME-ORDER [J].
HIRAMINE, Y .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 52 (01) :44-50
[10]  
Kyureghyan GM, 2008, LECT NOTES COMPUT SC, V5130, P117, DOI 10.1007/978-3-540-69499-1_10