Sirtuins (histone deacetylases III) in the cellular response to DNA damage - Facts and hypotheses

被引:52
作者
Kruszewski, M [1 ]
Szumiel, I [1 ]
机构
[1] Inst Nucl Chem & Technol, Dept Radiobiol & Hlth Protect, PL-03195 Warsaw, Poland
关键词
DNA double strand breaks; apoptosis; poly(ADP-ribose) polymerase;
D O I
10.1016/j.dnarep.2005.06.013
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Histone deacetylases (HDAC) are an important member of a group of enzymes that modify chromatin conformation. Homologues of the yeast gene SIR2 in mammalian cells code type III histone deacetylases (HDAC III, sirtuins), dependent on NAD(+) and inhibited by nicotinamide. In yeast cells, Sir2 participates in repression of transcriptional activity and in DNA double strand break repair. It is assumed that certain sirtuins may play a similar role in mammalian cells, by modifying chromatin structure and thus, altering the accessibility of the damaged sites for repair enzymes. A relation between poly(ADP-ribosylation) and sirtuin function in cells with damaged DNA has been also postulated. Interconnections between NAD+ metabolism, poly(ADP-ribosylation), DNA repair and gene expression should allow to modulate the cellular response to agents that damage DNA. Preliminary results, reviewed in this paper indicate that such possibility exists. We propose a hypothetical mechanism of sirtuin participation in DSB repair. It is based on the assumption that activation of PARP at the sites of DNA strand breaks leads to a local increase in nicotinamide concentration. Nicotinamide then inhibits sirtuins exactly at the site of DNA strand break. At present, however, there are no data directly confirming the effect of sirtuin inhibition on DSB repair processes in mammalian cells. Nevertheless, a connection between the acetylation status of histones and repair of DNA breaks has recently been found, indicating that all HDAC classes may modulate DNA repair processes. In addition, sirtuins exert an anti-apoptotic action in various cell types. Hence, it is possible to sensitise cells to apoptosis-inducing agents by sirtuin inhibitors. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1306 / 1313
页数:8
相关论文
共 62 条
[1]   Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Sinclair, DA .
NATURE, 2003, 423 (6936) :181-185
[2]   Histone deacetylase inhibitors: From chromatin remodeling to experimental cancer therapeutics [J].
Arts, J ;
de Schepper, S ;
Van Emelen, K .
CURRENT MEDICINAL CHEMISTRY, 2003, 10 (22) :2343-2350
[3]   The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle [J].
Aylon, Y ;
Liefshitz, B ;
Kupiec, M .
EMBO JOURNAL, 2004, 23 (24) :4868-4875
[4]   Functional links between transcription, DNA repair and apoptosis [J].
Berardi, P ;
Russell, M ;
El-Osta, A ;
Riabowol, K .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2004, 61 (17) :2173-2180
[5]   Class II histone deacetylases: Structure, function, and regulation [J].
Bertos, NR ;
Wang, AH ;
Yang, XJ .
BIOCHEMISTRY AND CELL BIOLOGY, 2001, 79 (03) :243-252
[6]   Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair [J].
Bird, AW ;
Yu, DY ;
Pray-Grant, MG ;
Qiu, QF ;
Harmon, KE ;
Megee, PC ;
Grant, PA ;
Smith, MM ;
Christman, MF .
NATURE, 2002, 419 (6905) :411-415
[7]   Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1 [J].
Bitterman, KJ ;
Anderson, RM ;
Cohen, HY ;
Latorre-Esteves, M ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (47) :45099-45107
[8]   The Sir2 family of protein deacetylases [J].
Blander, G ;
Guarente, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :417-435
[9]   Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases [J].
Borra, MT ;
Langer, MR ;
Slama, JT ;
Denu, JM .
BIOCHEMISTRY, 2004, 43 (30) :9877-9887
[10]   Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases [J].
Borra, MT ;
O'Neill, FJ ;
Jackson, MD ;
Marshall, B ;
Verdin, E ;
Foltz, KR ;
Denu, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (15) :12632-12641