EXISTENCE OF NONTRIVIAL SOLUTIONS FOR GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL OR SUPERCRITICAL GROWTHS

被引:10
作者
Li, Quanqing [1 ]
Wu, Xian [2 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
基金
中国国家自然科学基金; 山西省青年科学基金;
关键词
quasilinear Schrodinger equations; critical or supercritical growths; variational methods; SOLITON-SOLUTIONS; EXPONENTS; PLASMA;
D O I
10.1016/S0252-9602(17)30113-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following generalized quasilinear Schrodinger equations with critical or supercritical growths -div(g(2)(u)del u) + g (u)g'(u)vertical bar del u vertical bar(2) + V (x)u = f (x, u) + lambda vertical bar u vertical bar(p-2)u, x is an element of R-N, where lambda > 0, N >= 3, g : R -> R+ is a C-1 even function, g(0) = 1, g'(s) >= 0 for all s >= 0, lim(vertical bar s vertical bar ->+infinity) g(s)/vertical bar s vertical bar(alpha-1) := beta > 0 for some alpha >= 1 and (alpha - 1)g(s) > g'(s)s for all s > 0 and p >= alpha 2*. Under some suitable conditions, we prove that the equation has a nontrivial solution for small lambda > 0 using a change of variables and variational method.
引用
收藏
页码:1870 / 1880
页数:11
相关论文
共 29 条
[11]   GENERAL-METHOD FOR THE SOLUTION OF NON-LINEAR SOLITON AND KINK SCHRODINGER-EQUATIONS [J].
HASSE, RW .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 37 (01) :83-87
[12]   SELF-FOCUSING OF OPTICAL BEAMS [J].
KELLEY, PL .
PHYSICAL REVIEW LETTERS, 1965, 15 (26) :1005-&
[13]   MAGNETIC SOLITONS [J].
KOSEVICH, AM ;
IVANOV, BA ;
KOVALEV, AS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 194 (3-4) :117-238
[14]   LARGE-AMPLITUDE QUASI-SOLITONS IN SUPERFLUID FILMS [J].
KURIHARA, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (10) :3262-3267
[15]   EVOLUTION THEOREM FOR A CLASS OF PERTURBED ENVELOPE SOLITON-SOLUTIONS [J].
LAEDKE, EW ;
SPATSCHEK, KH ;
STENFLO, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2764-2769
[16]   Nash-Moser methods for the solution of quasilinear Schrodinger equations [J].
Lange, H ;
Poppenberg, M ;
Teismann, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1399-1418
[17]   Solutions for quasilinear Schrodinger equations via the Nehari method [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) :879-901
[18]   Soliton solutions for quasilinear Schrodinger equations, I [J].
Liu, JQ ;
Wang, ZQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :441-448
[19]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493
[20]   NON-LINEAR EFFECTS IN QUASI-ONE-DIMENSIONAL MODELS OF CONDENSED MATTER THEORY [J].
MAKHANKOV, VG ;
FEDYANIN, VK .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (01) :1-86