EXISTENCE OF NONTRIVIAL SOLUTIONS FOR GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL OR SUPERCRITICAL GROWTHS

被引:10
作者
Li, Quanqing [1 ]
Wu, Xian [2 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
基金
中国国家自然科学基金; 山西省青年科学基金;
关键词
quasilinear Schrodinger equations; critical or supercritical growths; variational methods; SOLITON-SOLUTIONS; EXPONENTS; PLASMA;
D O I
10.1016/S0252-9602(17)30113-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following generalized quasilinear Schrodinger equations with critical or supercritical growths -div(g(2)(u)del u) + g (u)g'(u)vertical bar del u vertical bar(2) + V (x)u = f (x, u) + lambda vertical bar u vertical bar(p-2)u, x is an element of R-N, where lambda > 0, N >= 3, g : R -> R+ is a C-1 even function, g(0) = 1, g'(s) >= 0 for all s >= 0, lim(vertical bar s vertical bar ->+infinity) g(s)/vertical bar s vertical bar(alpha-1) := beta > 0 for some alpha >= 1 and (alpha - 1)g(s) > g'(s)s for all s > 0 and p >= alpha 2*. Under some suitable conditions, we prove that the equation has a nontrivial solution for small lambda > 0 using a change of variables and variational method.
引用
收藏
页码:1870 / 1880
页数:11
相关论文
共 29 条
[1]  
[Anonymous], 1986, Expo. Math.
[2]   NONLINEAR ELECTROMAGNETIC-SPIN WAVES [J].
BASS, FG ;
NASONOV, NN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (04) :165-223
[3]   RELATIVISTIC AND PONDEROMOTIVE SELF-FOCUSING OF A LASER-BEAM IN A RADIALLY INHOMOGENEOUS-PLASMA .1. PARAXIAL APPROXIMATION [J].
BRANDI, HS ;
MANUS, C ;
MAINFRAY, G ;
LEHNER, T ;
BONNAUD, G .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (10) :3539-3550
[4]   NECESSARY AND SUFFICIENT CONDITIONS FOR SELF-FOCUSING OF SHORT ULTRAINTENSE LASER-PULSE IN UNDERDENSE PLASMA [J].
CHEN, XL ;
SUDAN, RN .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2082-2085
[5]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[6]   On instability of excited states of the nonlinear Schrodinger equation [J].
Cuccagna, Scipio .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (01) :38-54
[7]   Global existence of small solutions to a relativistic nonlinear Schrodinger equation [J].
deBouard, A ;
Hayashi, N ;
Saut, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (01) :73-105
[8]   Critical exponents and solitary wave solutions for generalized quasilinear Schrodinger equations [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :1228-1262
[9]   Positive soliton solutions for generalized quasilinear Schrodinger equations with critical growth [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (01) :115-147
[10]   SELECTION-MIGRATION MODEL IN POPULATION GENETICS [J].
FLEMING, WH .
JOURNAL OF MATHEMATICAL BIOLOGY, 1975, 2 (03) :219-233