Parameter and State Estimation in Vehicle Roll Dynamics

被引:83
作者
Rajamani, Rajesh [1 ]
Piyabongkarn, Damrongrit [2 ]
Tsourapas, Vasilis [2 ]
Lew, Jae Y. [2 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
[2] Eaton Corp, Innovat Ctr, Eden Prairie, MN 55344 USA
关键词
Cg height estimation; parameter estimation; roll angle estimation; roll dynamics; vehicle dynamics; STABILITY CONTROL; DESIGN;
D O I
10.1109/TITS.2011.2164246
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In active rollover prevention systems, a real-time rollover index, which indicates the likelihood of the vehicle to roll over, is used. This paper focuses on state and parameter estimation for reliable computation of the rollover index. Two key variables that are difficult to measure and play a critical role in the rollover index are found to be the roll angle and the height of the center of gravity of the vehicle. Algorithms are developed for real-time estimation of these variables. The algorithms investigated include a sensor fusion algorithm and a nonlinear dynamic observer. The sensor fusion algorithm requires a low-frequency tilt-angle sensor, whereas the dynamic observer utilizes only a lateral accelerometer and a gyroscope. The stability of the nonlinear observer is shown using Lyapunov's indirect method. The performance of the developed algorithms is investigated using simulations and experimental tests. Experimental data confirm that the developed algorithms perform reliably in a number of different maneuvers that include constant steering, ramp steering, double lane change, and sine with dwell steering tests.
引用
收藏
页码:1558 / 1567
页数:10
相关论文
共 50 条
  • [41] A Robust Unscented M-Estimation-Based Filter for Vehicle State Estimation With Unknown Input
    Xue, Zhongjin
    Cheng, Shuo
    Li, Liang
    Zhong, Zhihua
    Mu, Hongyuan
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (06) : 6119 - 6130
  • [42] An approach to network parameter estimation in power system state estimation
    Logic, N
    Heydt, GT
    [J]. ELECTRIC POWER COMPONENTS AND SYSTEMS, 2005, 33 (11) : 1191 - 1201
  • [43] System for monitoring and estimation of vehicle dynamics signals
    Hillenbrand, Stefan
    Otterbein, Stefan
    Rehm, Ansgar
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2007, 55 (06) : 330 - 335
  • [44] Simultaneous State Estimation and Tire Model Learning for Autonomous Vehicle Applications
    Jeon, Woongsun
    Chakrabarty, Ankush
    Zemouche, Ali
    Rajamani, Rajesh
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (04) : 1941 - 1950
  • [45] Dynamic State Estimation and Control of a Heavy Tractor-Trailers Vehicle
    Zhou, Shunbo
    Zhao, Hongchao
    Chen, Wen
    Liu, Zhe
    Wang, Hesheng
    Liu, Yun-Hui
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (03) : 1467 - 1478
  • [46] COMPARISON BETWEEN A POLYNOMIAL-CHAOS-BASED BAYESIAN APPROACH AND A POLYNOMIAL-CHAOS-BASED EKF APPROACH FOR PARAMETER ESTIMATION WITH APPLICATION TO VEHICLE DYNAMICS
    Blanchard, Emmanuel
    Sandu, Corina
    Sandu, Adrian
    [J]. DETC2009: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES/COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2010, : 893 - 904
  • [47] ESTIMATION OF A STATE-DEPENDENT MODEL PARAMETER
    CHUNG, YS
    CHUNG, CB
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1995, 12 (03) : 372 - 377
  • [48] State and Parameter Estimation for Affine Nonlinear Systems
    Ogri, Tochukwu Elijah
    Bell, Zachary I.
    Kamalapurkar, Rushikesh
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1517 - 1522
  • [49] State and parameter estimation in solenoid nonlinear equations
    Da Pelo, Paolo
    Mazzia, Francesca
    Mininni, Rosa Maria
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (02) : 809 - 818
  • [50] Combined parameter and state estimation in particle filtering
    Yang, Xiaojun
    Shi, Kunlin
    Huang, Tao
    Xing, Keyi
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 1614 - +