Independent vector analysis for convolutive blind noncircular source separation

被引:19
作者
Zhang, Hefa [1 ,2 ]
Li, Liping [2 ]
Li, Wanchun [2 ]
机构
[1] E China Res Inst Elect Engn, Hefei, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 610054, Peoples R China
关键词
Blind source separation (BSS); Independent component analysis (ICA); Independent vector analysis (IVA); Noncircular independent vector analysis (nc-IVA); Newton method; COMPONENT ANALYSIS; COMPLEX GRADIENT; ICA; ALGORITHM;
D O I
10.1016/j.sigpro.2012.02.020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Independent vector analysis (IVA), an extension of independent component analysis (ICA) from univariate components to multivariate components, is a method to tackle blind source separation (BSS) in frequency domain. IVA utilizes both the statistical independence among multivariate signals and the statistical inner dependency of each multivariate signal. However, so far there is no research on IVA for convolutive mixtures of noncircular sources. In this study, we focus on this problem and propose noncircular independent vector analysis (nc-IVA) algorithm, by deriving a new fixed-point algorithm that uses the information of pseudo-covariance matrix in each frequency bin. This modification provides more widely application scenarios with noncircular sources. Simulations demonstrate the effectiveness of our proposed method. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2275 / 2283
页数:9
相关论文
共 31 条
[1]  
Anderson M., 2010, P 2010 C LVA ICA ST
[2]   Complex-valued independent vector analysis: Application to multivariate Gaussian model [J].
Anderson, Matthew ;
Li, Xi-Lin ;
Adali, Tuelay .
SIGNAL PROCESSING, 2012, 92 (08) :1821-1831
[3]  
Bingham E, 2000, Int J Neural Syst, V10, P1, DOI 10.1142/S0129065700000028
[4]  
Brandwood D. H., 1983, IEE Proceedings H (Microwaves, Optics and Antennas), V130, P11, DOI 10.1049/ip-h-1.1983.0004
[5]   BLIND BEAMFORMING FOR NON-GAUSSIAN SIGNALS [J].
CARDOSO, JF ;
SOULOUMIAC, A .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (06) :362-370
[6]   High-order contrasts for independent component analysis [J].
Cardoso, JF .
NEURAL COMPUTATION, 1999, 11 (01) :157-192
[7]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[8]  
Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
[9]  
Davies M, 2002, INST MATH C, P57
[10]  
Douglas S.C., 2007, EURASIP J ADV SIG PR, V2007, P1