THE PERIODIC-PARABOLIC LOGISTIC EQUATION ON RN

被引:17
作者
Peng, Rui [1 ,2 ]
Wei, Dong [3 ]
机构
[1] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[3] Hebei Univ Engn, Handan City 056038, Hebei Province, Peoples R China
关键词
Periodic-parabolic logistic equation; entire space; positive periodic solution; uniqueness; asymptotic behavior; SEMILINEAR ELLIPTIC-EQUATIONS; BOUNDARY BLOW-UP; POSITIVE SOLUTIONS; INDEFINITE; UNIQUENESS; EXISTENCE; BEHAVIOR; GROWTH;
D O I
10.3934/dcds.2012.32.619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the periodic-parabolic logistic equation on the entire space R-N (N >= 1): {partial derivative(t)u - Delta u = a(x, t)u - b(x, t)u(p) in R-N x (0, T), u(x, 0) = u(x, T) in R-N, where the constants T > 0 and p > 1, and the functions a, b with b > 0 are smooth in R-N x R and T-periodic in time. Under the assumptions that a(x, t)/vertical bar x vertical bar(gamma) and b(x, t)/vertical bar x vertical bar(tau) are bounded away from 0 and infinity for all large vertical bar x vertical bar, where the constants gamma > -2 and tau is an element of R, we study the existence and uniqueness of positive T-periodic solutions. In particular, we determine the asymptotic behavior of the unique positive T-periodic solution as vertical bar x vertical bar -> infinity, which turns out to depend on the sign of gamma. Our investigation considerably generalizes the existing results.
引用
收藏
页码:619 / 641
页数:23
相关论文
共 50 条
  • [21] The parabolic logistic equation with blow-up initial and boundary values
    Du, Yihong
    Peng, Rui
    Polacik, Peter
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 118 : 297 - 316
  • [22] Sharp spatiotemporal patterns in the diffusive time-periodic logistic equation
    Du, Yihong
    Peng, Rui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (09) : 3794 - 3816
  • [23] Periodic solutions of a delayed periodic logistic equation
    Chen, YM
    APPLIED MATHEMATICS LETTERS, 2003, 16 (07) : 1047 - 1051
  • [24] Time Periodic Solutions for a Pseudo-parabolic Type Equation with Weakly Nonlinear Periodic Sources
    Li, Yinghua
    Cao, Yang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (02) : 667 - 682
  • [25] On the Time-periodic Solutions of a Quasi linear Degenerate Parabolic Equation
    Zhan, Huashui
    Li, Long
    FMA '09: PROCEEDINGS OF THE 7TH IASME / WSEAS INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND AERODYNAMICS, 2009, : 212 - 219
  • [26] Local diffusion vs. nonlocal dispersal in periodic logistic equations
    Sun, Jian-Wen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 354 : 67 - 89
  • [27] Uniqueness and Estimates for a Parabolic Equation with L1 Data
    Porzio, Maria Michaela
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (02) : 689 - 710
  • [28] A note on stability of stochastic logistic equation
    Liu, Meng
    Wang, Ke
    APPLIED MATHEMATICS LETTERS, 2013, 26 (06) : 601 - 606
  • [29] Periodic solutions for a degenerate parabolic equation
    Ke, Yuanyuan
    Huang, Rui
    Sun, Jiebao
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 910 - 915
  • [30] Nonlinear perturbations of a periodic Kirchhoff equation in RN
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) : 2750 - 2759