Bifurcation analysis of the Kuramoto-Sivashinsky equation in one spatial dimension

被引:13
作者
Li, CP [1 ]
Chen, GR
机构
[1] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2001年 / 11卷 / 09期
基金
中国国家自然科学基金;
关键词
D O I
10.1142/S021812740100353X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Letter, we study the bifurcation of the Kuramoto-Sivashinsky (K-S) equation in one-spatial dimension with three kinds of boundary value conditions. Using the Liapunov-Schmidt reduction technique, the original equation is first reduced to one or two bifurcation equations, so that bifurcation analysis of the original equation can be transformed to that of the reduced-order systems, and can therefore be carried out in detail.
引用
收藏
页码:2493 / 2499
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 1988, APPL MATH SCI
[2]  
Chow S-N., 2012, METHODS BIFURCATION
[3]  
Foial C., 1988, J DIFF EQS, V73, P93
[4]  
Golubitsky M., 1985, SINGULARITIES GROUPS
[5]   ON THE BEHAVIOR OF THE SOLUTIONS OF THE KURAMOTO-SIVASHINSKY EQUATION FOR NEGATIVE TIME [J].
KUKAVICA, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 166 (02) :601-606
[6]  
KURAMOTO Y, 1978, PROG THEOR PHYS S, V64, P346, DOI DOI 10.1143/PTPS.64.346
[7]  
Li CP, 2000, APPL MATH MECH-ENGL, V21, P265
[8]   Bifurcations of one-dimensional reaction-diffusion equations [J].
Li, CP ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (05) :1295-1306
[9]  
LI CP, 2001, MATH APPL, V14, P22
[10]  
LI CP, 2000, MATH APPL, V13, P46