Light cone renormalization and quantum quenches in one-dimensional Hubbard models

被引:51
作者
Enss, Tilman [1 ]
Sirker, Jesko [2 ,3 ]
机构
[1] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
[2] Tech Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[3] Tech Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
关键词
DENSITY-MATRIX; CONSERVATION-LAWS; STOCHASTIC-MODELS; SYSTEMS; THERMALIZATION;
D O I
10.1088/1367-2630/14/2/023008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lieb-Robinson bound implies that the unitary time evolution of an operator can be restricted to an effective light cone for any Hamiltonian with short-range interactions. Here we present a very efficient renormalization group algorithm based on this light cone structure to study the time evolution of prepared initial states in the thermodynamic limit in one-dimensional quantum systems. The algorithm does not require translational invariance and allows for an easy implementation of local conservation laws. We use the algorithm to investigate the relaxation dynamics of double occupancies in fermionic Hubbard models as well as a possible thermalization. For the integrable Hubbard model, we find a pure power-law decay of the number of doubly occupied sites towards the value in the long-time limit, while the decay becomes exponential when adding a nearest-neighbor interaction. In accordance with the eigenstate thermalization hypothesis, the long-time limit is reasonably well described by a thermal average. We point out, however, that such a description naturally requires the use of negative temperatures. Finally, we study a doublon impurity in a Neel background and find that the excess charge and spin spread at different velocities, providing an example of spin-charge separation in a highly excited state.
引用
收藏
页数:18
相关论文
共 42 条
[1]   Excitons in the one-dimensional Hubbard model:: A real-time study [J].
Al-Hassanieh, K. A. ;
Reboredo, F. A. ;
Feiguin, A. E. ;
Gonzalez, I. ;
Dagotto, E. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[2]   Valence bond entanglement entropy [J].
Alet, Fabien ;
Capponi, Sylvain ;
Laflorencie, Nicolas ;
Mambrini, Matthieu .
PHYSICAL REVIEW LETTERS, 2007, 99 (11)
[3]   Matrix Product States for Dynamical Simulation of Infinite Chains [J].
Banuls, M. C. ;
Hastings, M. B. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[4]   Relaxation of Antiferromagnetic Order in Spin-1/2 Chains Following a Quantum Quench [J].
Barmettler, Peter ;
Punk, Matthias ;
Gritsev, Vladimir ;
Demler, Eugene ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[5]  
Baxter R., 2007, Exactly Solved Models in Statistical Mechanics
[6]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[7]   NUMERICAL AND APPROXIMATE ANALYTICAL RESULTS FOR THE FRUSTRATED SPIN-1/2 QUANTUM SPIN CHAIN [J].
BURSILL, R ;
GEHRING, GA ;
FARNELL, DJJ ;
PARKINSON, JB ;
XIANG, T ;
ZENG, C .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (45) :8605-8618
[8]   Generalized Thermalization in an Integrable Lattice System [J].
Cassidy, Amy C. ;
Clark, Charles W. ;
Rigol, Marcos .
PHYSICAL REVIEW LETTERS, 2011, 106 (14)
[9]   Exploring local quantum many-body relaxation by atoms in optical superlattices [J].
Cramer, M. ;
Flesch, A. ;
McCulloch, I. P. ;
Schollwoeck, U. ;
Eisert, J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[10]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,