Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review

被引:443
作者
Jensen, Erik Steen [1 ]
Peoples, Mark B. [2 ]
Boddey, Robert M. [3 ]
Gresshoff, Peter M. [4 ]
Hauggaard-Nielsen, Henrik [5 ]
Alves, Bruno J. R. [3 ]
Morrison, Malcolm J. [6 ]
机构
[1] Swedish Univ Agr Sci, Dept Agrosyst, S-23053 Alnarp, Sweden
[2] CSIRO Plant Ind, CSIRO Sustainable Agr Flagship, Canberra, ACT 2601, Australia
[3] Embrapa Agrobiol, BR-23890000 Rio De Janeiro, Brazil
[4] Univ Queensland, Ctr Integrat Legume Res, St Lucia, Qld 4072, Australia
[5] Riso DTU Natl Lab Sustainable Energy, Biosyst Div, DK-4000 Roskilde, Denmark
[6] Agr & Agri Food Canada, Eastern Cereal & Oilseed Res Ctr, Cent Expt Farm, Ottawa, ON K2E 6A8, Canada
基金
澳大利亚研究理事会;
关键词
Legumes; Biological N-2 fixation; Carbon sequestration; Greenhouse gases; Biorefinery; Biofuels; NITROUS-OXIDE EMISSIONS; SOIL ORGANIC-CARBON; FREE-LIVING CELLS; CROPPING SYSTEMS; N-2; FIXATION; AGRICULTURAL FIELDS; ENERGY CROPS; BRADYRHIZOBIUM-JAPONICUM; RHIZOBIUM-MELILOTI; MICROBIAL BIOMASS;
D O I
10.1007/s13593-011-0056-7
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Humans are currently confronted by many global challenges. These include achieving food security for a rapidly expanding population, lowering the risk of climate change by reducing the net release of greenhouse gases into the atmosphere due to human activity, and meeting the increasing demand for energy in the face of dwindling reserves of fossil energy and uncertainties about future reliability of supply. Legumes deliver several important services to societies. They provide important sources of oil, fiber, and protein-rich food and feed while supplying nitrogen (N) to agro-ecosystems via their unique ability to fix atmospheric N-2 in symbiosis with the soil bacteria rhizobia, increasing soil carbon content, and stimulating the productivity of the crops that follow. However, the role of legumes has rarely been considered in the context of their potential to contribute to the mitigation of climate change by reducing fossil fuel use or by providing feedstock for the emerging biobased economies where fossil sources of energy and industrial raw materials are replaced in part by sustainable and renewable biomass resources. The aim of this review was to collate the current knowledge regarding the capacity of legumes to (1) lower the emissions of the key greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O) compared to N-fertilized systems, (2) reduce the fossil energy used in the production of food and forage, (3) contribute to the sequestration of carbon (C) in soils, and (4) provide a viable source of biomass for the generation of biofuels and other materials in future biorefinery concepts. We estimated that globally between 350 and 500 Tg CO2 could be emitted as a result of the 33 to 46 Tg N that is biologically fixed by agricultural legumes each year. This compares to around 300 Tg CO2 released annually from the manufacture of 100 Tg fertilizer N. The main difference is that the CO2 respired from the nodulated roots of N-2-fixing legumes originated from photosynthesis and will not represent a net contribution to atmospheric concentrations of CO2, whereas the CO2 generated during the synthesis of N fertilizer was derived from fossil fuels. Experimental measures of total N2O fluxes from legumes and N-fertilized systems were found to vary enormously (0.03-7.09 and 0.09-18.16 kg N2O-N ha(-1), respectively). This reflected the data being collated from a diverse range of studies using different rates of N inputs, as well as the large number of climatic, soil, and management variables known to influence denitrification and the portion of the total N lost as N2O. Averages across 71 site-years of data, soils under legumes emitted a total of 1.29 kg N2O-N ha(-1) during a growing season. This compared to a mean of 3.22 kg N2O-N ha(-1) from 67 site-years of N-fertilized crops and pastures, and 1.20 kg N2O-N ha(-1) from 33 site-years of data collected from unplanted soils or unfertilized non-legumes. It was concluded that there was little evidence that biological N-2 fixation substantially contributed to total N2O emissions, and that losses of N2O from legume soil were generally lower than N-fertilized systems, especially when commercial rates of N fertilizer were applied. Elevated rates of N2O losses can occur following the termination of legume-based pastures, or where legumes had been green- or brown-manured and there was a rapid build-up of high concentrations of nitrate in soil. Legume crops and legume-based pastures use 35% to 60% less fossil energy than N-fertilized cereals or grasslands, and the inclusion of legumes in cropping sequences reduced the average annual energy usage over a rotation by 12% to 34%. The reduced energy use was primarily due to the removal of the need to apply N fertilizer and the subsequently lower N fertilizer requirements for crops grown following legumes. Life cycle energy balances of legume-based rotations were also assisted by a lower use of agrichemicals for crop protection as diversification of cropping sequences reduce the incidence of cereal pathogens and pests and assisted weed control, although it was noted that differences in fossil energy use between legumes and N-fertilized systems were greatly diminished if energy use was expressed per unit of biomass or grain produced. For a change in land use to result in a net increase C sequestration in soil, the inputs of C remaining in plant residues need to exceed the CO2 respired by soil microbes during the decomposition of plant residues or soil organic C, and the C lost through wind or water erosion. The net N-balance of the system was a key driver of changes in soil C stocks in many environments, and data collected from pasture, cropping, and agroforestry systems all indicated that legumes played a pivotal role in providing the additional organic N required to encourage the accumulation of soil C at rates greater than can be achieved by cereals or grasses even when they were supplied with N fertilizer. Legumes contain a range of compounds, which could be refined to produce raw industrial materials currently manufactured from petroleum-based sources, pharmaceuticals, surfactants, or food additives as valuable by-products if legume biomass was to be used to generate biodiesel, bioethanol, biojet A1 fuel, or biogas. The attraction of using leguminous material feedstock is that they do not need the inputs of N fertilizer that would otherwise be necessary to support the production of high grain yields or large amounts of plant biomass since it is the high fossil energy use in the synthesis, transport, and application of N fertilizers that often negates much of the net C benefits of many other bioenergy sources. The use of legume biomass for biorefineries needs careful thought as there will be significant trade-offs with the current role of legumes in contributing to the organic fertility of soils. Agricultural systems will require novel management and plant breeding solutions to provide the range of options that will be required to mitigate climate change. Given their array of ecosystem services and their ability to reduce greenhouse gas emissions, lower the use of fossil energy, accelerate rates of C sequestration in soil, and provide a valuable source of feedstock for biorefineries, legumes should be considered as important components in the development of future agroecosystems.
引用
收藏
页码:329 / 364
页数:36
相关论文
共 214 条
  • [31] Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil
    Bayer, C
    Mielniczuk, J
    Amado, TJC
    Martin-Neto, L
    Fernandes, SV
    [J]. SOIL & TILLAGE RESEARCH, 2000, 54 (1-2) : 101 - 109
  • [32] EFFECTS OF AVAILABLE SOIL-NITROGEN AND RATES OF INOCULATION ON NITROGEN-FIXATION BY IRRIGATED SOYBEANS AND EVALUATION OF DELTA-15-N METHODS FOR MEASUREMENT
    BERGERSEN, FJ
    BROCKWELL, J
    GAULT, RR
    MORTHORPE, L
    PEOPLES, MB
    TURNER, GL
    [J]. AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1989, 40 (04): : 763 - 780
  • [33] GASEOUS NITROGEN LOSSES FROM FIELD PLOTS GROWN WITH PEA (PISUM-SATIVUM L) OR SPRING BARLEY (HORDEUM-VULGARE L) ESTIMATED BY N-15 MASS BALANCE AND ACETYLENE INHIBITION TECHNIQUES
    BERTELSEN, F
    JENSEN, ES
    [J]. PLANT AND SOIL, 1992, 142 (02) : 287 - 295
  • [34] Biofuels, greenhouse gases and climate change. A review
    Bessou, Cecile
    Ferchaud, Fabien
    Gabrielle, Benoit
    Mary, Bruno
    [J]. AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2011, 31 (01) : 1 - 79
  • [35] Blasing T.J., 2014, Recent Greenhouse Gas Concentrations, DOI 10.3334/CDIAC/ATG.032
  • [36] Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis
    Boateng, Akwasi A.
    Mullen, Charles A.
    Goldberg, Neil
    Hicks, Kevin B.
    Jung, Hans-Joachim G.
    Lamb, JoAnn F. S.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (12) : 4115 - 4122
  • [37] Sustainable Production of Bioenergy and Biochar from the Straw of High-Biomass Soybean Lines via Fast Pyrolysis
    Boateng, Akwasi A.
    Mullen, Charles A.
    Goldberg, Neil M.
    Hicks, Kevin B.
    Devine, Thomas E.
    Lima, Isabel M.
    McMurtrey, James E.
    [J]. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2010, 29 (02) : 175 - 183
  • [38] Boddey R. M., 2003, Journal of Crop Production, V9, P593, DOI 10.1300/J144v09n01_10
  • [39] Boddey R.M., 2009, Nitrogen fixation in crop production, P387
  • [40] Boddey RM., 2008, Biofuels, P321, DOI [10.1007/978-1-4020-8654-013, DOI 10.1007/978-1-4020-8654-013]