CONSTRUCTION OF ONE-DIMENSIONAL SUBSETS OF THE REALS NOT CONTAINING SIMILAR COPIES OF GIVEN PATTERNS

被引:29
作者
Keleti, Tamas [1 ]
机构
[1] Eotvos Lorand Univ, Dept Anal, H-1117 Budapest, Hungary
关键词
Hausdorff dimension; avoiding pattern; Erdos similarity problem; similar copy; affine copy;
D O I
10.2140/apde.2008.1.29
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any countable collection of sets of three points we construct a compact subset of the real line with Hausdorff dimension 1 that contains no similar copy of any of the given triplets.
引用
收藏
页码:29 / 33
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1990, FRACTAL GEOMETRY
[2]  
BISBAS A, 2006, AVOIDING AFFIN UNPUB
[4]   Covering R with translates of a compact set [J].
Darji, UB ;
Keleti, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) :2593-2596
[5]   Less than 2ω many translates of a compact nullset may cover the real line [J].
Elekes, M ;
Steprans, J .
FUNDAMENTA MATHEMATICAE, 2004, 181 (01) :89-96
[6]  
Erdos P., 1957, Colloq. Math., V4, P195
[7]  
ERDOS P, 1974, MATH BALKANICA, V4, P197
[8]   ON A PROBLEM OF ERDOS ON SEQUENCES AND MEASURABLE SETS [J].
FALCONER, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 90 (01) :77-78
[9]   A visit to the Erdos problem [J].
Humke, PD ;
Laczkovich, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (03) :819-822
[10]  
Keleti T., 1998, REAL ANAL EXCHANGE, V24, P843, DOI 10.2307/44153003