Quasi-static evolution for fatigue debonding

被引:1
作者
Ferriero, Alessandro [1 ]
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
关键词
variational models; quasistatic evolution; rate-independent processes; fatigue; fractures;
D O I
10.1051/cocv:2007046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The propagation of fractures in a solid undergoing cyclic loadings is known as the fatigue phenomenon. In this paper, we present a time continuous model for fatigue, in the special situation of the debonding of thin layers, coming from a time discretized version recently proposed by Jaubert and Marigo [C. R. Mecanique 333 (2005) 550-556]. Under very general assumptions on the surface energy density and on the applied displacement, we discuss the well-posedness of our problem and we give the main properties of the evolution process.
引用
收藏
页码:233 / 253
页数:21
相关论文
共 14 条
[1]  
[Anonymous], 1986, CONVEXITY OPTIMIZATI
[2]  
Dacorogna B., 1989, DIRECT METHODS CALCU
[3]   Quasistatic crack growth in nonlinear elasticity [J].
Dal Maso, G ;
Francfort, GA ;
Toader, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (02) :165-225
[4]   A model for the quasi-static growth of brittle fractures: Existence and approximation results [J].
Dal Maso, G ;
Toader, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 162 (02) :101-135
[5]   Revisiting brittle fracture as an energy minimization problem [J].
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (08) :1319-1342
[6]   Existence and convergence for quasi-static evolution in brittle fracture [J].
Francfort, GA ;
Larsen, CJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (10) :1465-1500
[7]   Existence results for a class of rate-independent material models with nonconvex elastic energies [J].
Francfort, Gilles ;
Mielke, Alexander .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 595 :55-91
[8]   A variational view of partial brittle damage evolution [J].
Francfort, Gilles A. ;
Garroni, Adriana .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 182 (01) :125-152
[9]  
Friedman A., 1982, VARIATIONAL PRINCIPL
[10]  
Griffith A.A., 1921, Philos. Trans. R. Soc. Lond. Ser. A, Contain. Pap. A Math. Or. Phys. Character, VA221, P163, DOI DOI 10.1098/RSTA.1921.0006