Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification

被引:126
作者
Gao, Yunyuan [1 ,2 ]
Gao, Bo [1 ]
Chen, Qiang [1 ]
Liu, Jia [3 ]
Zhang, Yingchun [4 ]
机构
[1] Hangzhou Dianzi Univ, Coll Automat, Intelligent Control & Robot Inst, Sch Automat, Hangzhou, Peoples R China
[2] Key Lab Brain Machine Collaborat Intelligence Zhe, Hangzhou, Peoples R China
[3] Auburn Univ, Dept Ind & Syst Engn, Auburn, AL 36849 USA
[4] Univ Houston, Dept Biomed Engn, Houston, TX USA
来源
FRONTIERS IN NEUROLOGY | 2020年 / 11卷
基金
浙江省自然科学基金;
关键词
epileptic EEG signal classification; power spectrum density energy diagram; deep convolutional neural networks; electroencephalogram; EEG; SEIZURE PREDICTION; POWER;
D O I
10.3389/fneur.2020.00375
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Electroencephalogram (EEG) signals contain vital information on the electrical activities of the brain and are widely used to aid epilepsy analysis. A challenging element of epilepsy diagnosis, accurate classification of different epileptic states, is of particular interest and has been extensively investigated. A new deep learning-based classification methodology, namely epileptic EEG signal classification (EESC), is proposed in this paper. This methodology first transforms epileptic EEG signals to power spectrum density energy diagrams (PSDEDs), then applies deep convolutional neural networks (DCNNs) and transfer learning to automatically extract features from the PSDED, and finally classifies four categories of epileptic states (interictal, preictal duration to 30 min, preictal duration to 10 min, and seizure). It outperforms the existing epilepsy classification methods in terms of accuracy and efficiency. For instance, it achieves an average classification accuracy of over 90% in a case study with CHB-MIT epileptic EEG data.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[2]   AUTOMATIC DETECTION OF EPILEPTIC EEG SIGNALS USING HIGHER ORDER CUMULANT FEATURES [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Suri, Jasjit S. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2011, 21 (05) :403-414
[3]   SLEEP DURATION AND THE POWER SPECTRAL DENSITY OF THE EEG [J].
AKERSTEDT, T ;
GILLBERG, M .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1986, 64 (02) :119-122
[4]  
[Anonymous], 2017, 31 AAAI C ART INT SA
[5]  
Banerjee S, 2003, LECT NOTES COMPUT SC, V2588, P370
[6]   Predicting epileptic seizures from scalp EEG based on attractor state analysis [J].
Chu, Hyunho ;
Chung, Chun Kee ;
Jeong, Woorim ;
Cho, Kwang-Hyun .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 143 :75-87
[7]   Removal of ocular artifact from the EEG: a review [J].
Croft, RJ ;
Barry, RJ .
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2000, 30 (01) :5-19
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   Future trends in epileptology [J].
Elger, CE .
CURRENT OPINION IN NEUROLOGY, 2001, 14 (02) :185-186
[10]   A forward-looking review of seizure prediction [J].
Freestone, Dean R. ;
Karoly, Philippa J. ;
Cook, Mark J. .
CURRENT OPINION IN NEUROLOGY, 2017, 30 (02) :167-173