In Situ Oxygen-Doped Porous Carbon Nanoribbons with Expanded Interlayer Distance for Enhanced Potassium Ion Storage

被引:9
作者
Feng, Yefeng [1 ]
Wu, Kaidan [2 ]
Wu, Shanshan [2 ]
He, Miao [2 ]
Xu, Xuezhu [3 ,4 ,5 ]
Xue, Ming [1 ]
机构
[1] Sun Yat sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Peoples R China
[2] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[3] South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[4] South China Acad Adv Optoelect, Inst Elect Paper Displays, Guangzhou 510006, Peoples R China
[5] South China Normal Univ, Natl Ctr Int Res Green Optoelect, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen doping; carbon nanobelt; porous materials; anode; potassium-ion batteries; HIGH-PERFORMANCE ANODE; ACTIVATED CARBON; CATHODE MATERIAL; HARD CARBON; NITROGEN; NANOSHEETS; GRAPHENE; LITHIUM; AEROGELS; INTERCALATION;
D O I
10.1021/acsaem.2c02526
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon materials have been widely concerned and studied for potassium-ion batteries because of abundant resources and low prices. But, the large radius of potassium ions (1.38 angstrom) restricts its smooth intercalation and deintercalation into the carbon layer, resulting in poor cycling stability and rate performance. Herein, in situ oxygen-doped porous carbon nanoribbons (OPCNBs) have been fabricated by freeze-drying and pyrolysis of the polymer with enlarged interlayer spacing for the first time. Due to the porosity and the enlarged interlayer spacing (0.413 nm) of OPCNB, the potassium ions can be rapidly intercalated into the carbon layer and smoothly extracted and some of the potassium ions are adsorbed on the surface active site stemming from the oxygen-doped group. Further, ex situ TEM showed that the enlarged interlayer spacing was well preserved during repeated cycling. Therefore, OPCNB exhibits excellent long cycle stability (180.5 mAh g-1 at 500 mA g-1 after 1000 cycles) and outstanding rate capability (170 mAh g-1 at 1 A g-1) as a new generation electrode material with development potential for potassium ions.
引用
收藏
页码:12966 / 12976
页数:11
相关论文
共 60 条
[1]   Commercial expanded graphite as a low cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte [J].
An, Yongling ;
Fei, Huifang ;
Zeng, Guifang ;
Ci, Lijie ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui .
JOURNAL OF POWER SOURCES, 2018, 378 :66-72
[2]   A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs [J].
An, Yongling ;
Fei, Huifang ;
Zhang, Zhen ;
Ci, Lijie ;
Xiong, Shenglin ;
Feng, Jinkui .
CHEMICAL COMMUNICATIONS, 2017, 53 (59) :8360-8363
[3]   Carbonized wood monoliths - Characterization [J].
Byrne, CE ;
Nagle, DC .
CARBON, 1997, 35 (02) :267-273
[4]   Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries [J].
Chen, Chaoji ;
Wang, Zhenggang ;
Zhang, Bao ;
Miao, Ling ;
Cai, Jie ;
Peng, Linfeng ;
Huang, Yangyang ;
Jiang, Jianjun ;
Huang, Yunhui ;
Zhang, Lina ;
Xie, Jia .
ENERGY STORAGE MATERIALS, 2017, 8 :161-168
[5]   Designing and Understanding the Superior Potassium Storage Performance of Nitrogen/Phosphorus Co-Doped Hollow Porous Bowl-Like Carbon Anodes [J].
Chen, Jiamin ;
Cheng, Yong ;
Zhang, Qiaobao ;
Luo, Chong ;
Li, Hong-Yang ;
Wu, Ying ;
Zhang, Hehe ;
Wang, Xiang ;
Liu, Haodong ;
He, Xin ;
Han, Jiajia ;
Peng, Dong-Liang ;
Liu, Meilin ;
Wang, Ming-Sheng .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (01)
[6]   Self-assembly of 3D neat porous carbon aerogels with NaCl as template and flux for sodium-ion batteries [J].
Chen, Yuxiang ;
Zhang, Zhian ;
Lai, Yanqing ;
Shi, Xiaodong ;
Li, Junming ;
Chen, Xiaobin ;
Zhang, Kai ;
Li, Jie .
JOURNAL OF POWER SOURCES, 2017, 359 :529-538
[7]   High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Jia, Xilai ;
Xiao, Qiangfeng ;
Dunn, Bruce ;
Lu, Yunfeng .
ACS NANO, 2012, 6 (05) :4319-4327
[8]   Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability [J].
Chu, Kainian ;
Zhang, Xiaojuan ;
Yang, Yang ;
Li, Zhiqiang ;
Wei, Lingzhi ;
Yao, Ge ;
Zheng, Fangcai ;
Chen, Qianwang .
CARBON, 2021, 184 :277-286
[9]   Constructing an interface synergistic effect from a SnS/MoS2 heterojunction decorating N, S co-doped carbon nanosheets with enhanced sodium ion storage performance [J].
Cui, Lisan ;
Tan, Chunlei ;
Yang, Guanhua ;
Li, Yu ;
Pan, Qichang ;
Zhang, Man ;
Chen, Zilu ;
Zheng, Fenghua ;
Wang, Hongqiang ;
Li, Qingyu .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (43) :22593-22600
[10]   P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres as cathode materials for high performance potassium-ion batteries [J].
Deng, Qiang ;
Zheng, Fenghua ;
Zhong, Wentao ;
Pan, Qichang ;
Liu, Yanzhen ;
Li, Youpeng ;
Chen, Guilin ;
Li, Yunsha ;
Yang, Chenghao ;
Liu, Meilin .
CHEMICAL ENGINEERING JOURNAL, 2020, 392