Some Estimates for Maximal Bochner-Riesz Means on Musielak-Orlicz Hardy Spaces

被引:1
作者
Li, Bo [1 ,2 ]
Liao, Minfeng [1 ]
Li, Baode [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Bochner-Riesz means; Musielak-Orlicz function; Hardy space; OPERATORS;
D O I
10.1134/S0001434620030293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi: Double-struck capital Rn x [0, infinity) -> [0, infinity) satisfy that phi(x, center dot), for any given x is an element of Rn, is an Orlicz function and phi(center dot, t) is a Muckenhoupt A infinity weight uniformly in t is an element of (0, infinity). The Musielak-Orlicz Hardy space H-phi(Double-struck capital R-n) is defined to be the space of all tempered distributions whose grand maximal functions belong to the Musielak-Orlicz space L-phi(Double-struck capital R-n). In this paper, the authors establish the boundedness of maximal Bochner-Riesz means T*(delta) from H-phi(Double-struck capital R-n) to WL phi(Double-struck capital R-n) or L-phi(Double-struck capital R-n). These results are also new even when phi(x, t):= phi(t) for all (x, t) is an element of Double-struck capital R-n x [0, infinity), where phi is an Orlicz function.
引用
收藏
页码:618 / 627
页数:10
相关论文
共 31 条
[1]  
[Anonymous], 2017, The Nielsen Total Audience Report Q1 2017
[2]  
Bochner S, 1936, T AM MATH SOC, V40, P175
[3]   On the product of functions in BMO and H1 [J].
Bonami, Aline ;
Iwaniec, Tadeusz ;
Jones, Peter ;
Zinsmeister, Michel .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (05) :1405-1439
[4]   Paraproducts and products of functions in BMO(Rn) and H1 (Rn) through wavelets [J].
Bonami, Aline ;
Grellier, Sandrine ;
Luong Dang Ky .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (03) :230-241
[5]   ENDPOINT FOR THE DIV-CURL LEMMA IN HARDY SPACES [J].
Bonami, Aline ;
Feuto, Justin ;
Grellier, Sandrine .
PUBLICACIONS MATEMATIQUES, 2010, 54 (02) :341-358
[6]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247
[7]   Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces [J].
Fan XingYa ;
He JianXun ;
Li BaoDe ;
Yang DaChun .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) :2093-2154
[8]  
Grafakos L, 2009, GRAD TEXTS MATH, V250, P1, DOI [10.1007/978-0-387-09434-2_6, 10.1007/978-0-387-09432-8_1]
[9]   A study of Jacobians in Hardy-Orlicz spaces [J].
Iwaniec, T ;
Verde, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :539-570
[10]  
IWANIEC T, 1994, J REINE ANGEW MATH, V454, P143