Simulating time evolution with fully optimized single-qubit gates on parametrized quantum circuits

被引:11
作者
Wada, Kaito [1 ]
Raymond, Rudy [2 ,3 ]
Ohnishi, Yu-ya [3 ,4 ]
Kaminishi, Eriko [3 ,5 ]
Sugawara, Michihiko [3 ]
Yamamoto, Naoki [1 ,3 ]
Watanabe, Hiroshi C. [3 ]
机构
[1] Keio Univ, Dept Appl Phys & Physicoinformat, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[2] IBM Japan Ltd, IBM Quantum, Chuo Ku, 19-21 Nihonbashi Hakozaki Cho, Tokyo 1038510, Japan
[3] Keio Univ, Quantum Comp Ctr, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[4] JSR Corp, Mat Informat Initiat, RD Technol & Digital Transformat Ctr, Kawasaki Ku, 3-103-9 Tonomachi, Yokohama, Kanagawa 2100821, Japan
[5] JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
关键词
DYNAMICS;
D O I
10.1103/PhysRevA.105.062421
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a method to sequentially optimize arbitrary single-qubit gates in parametrized quantum circuits for simulating real- and imaginary-time evolution. The method utilizes full degrees of freedom of single-qubit gates and therefore can potentially obtain better performance. Specifically, it simultaneously optimizes both the axis and the angle of a single-qubit gate, while the known methods either optimize the angle with the axis fixed, or vice versa. It generalizes the known methods and utilizes sinusoidal cost functions parametrized by the axis and angle of rotation. Furthermore, we demonstrate how it can be extended to optimize a set of parametrized two-qubit gates with excitation-conservation constraints, which includes the HOP and the reconfigurable beamsplitter gates. We perform numerical experiments showing the power of the proposed method to find ground states of typical Hamiltonians with quantum imaginary-time evolution using parametrized quantum circuits. In addition, we show the method can be applied to real-time evolution and discuss the tradeoff between its simulation accuracy and hardware efficiency.
引用
收藏
页数:20
相关论文
共 49 条
[1]  
Anis M. D. S., 2021, QISKIT OPEN SOURCE F
[2]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[3]   Hardware-efficient variational quantum algorithms for time evolution [J].
Benedetti, Marcello ;
Fiorentini, Mattia ;
Lubasch, Michael .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[4]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[5]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[6]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[7]   Femtosecond dynamics of NaI ionization and dissociative ionization [J].
Charron, E ;
Suzor-Weiner, A .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (10) :3922-3931
[8]   Doubling the Size of Quantum Simulators by Entanglement Forging [J].
Eddins, Andrew ;
Motta, Mario ;
Gujarati, Tanvi P. ;
Bravyi, Sergey ;
Mezzacapo, Antonio ;
Hadfield, Charles ;
Sheldon, Sarah .
PRX QUANTUM, 2022, 3 (01)
[9]   A TIME-DEPENDENT INTERPRETATION OF THE ABSORPTION-SPECTRUM OF CH3ONO [J].
ENGEL, V ;
SCHINKE, R ;
HENNIG, S ;
METIU, H .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :1-13
[10]   Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms [J].
Foxen, B. ;
Neill, C. ;
Dunsworth, A. ;
Roushan, P. ;
Chiaro, B. ;
Megrant, A. ;
Kelly, J. ;
Chen, Zijun ;
Satzinger, K. ;
Barends, R. ;
Arute, F. ;
Arya, K. ;
Babbush, R. ;
Bacon, D. ;
Bardin, J. C. ;
Boixo, S. ;
Buell, D. ;
Burkett, B. ;
Chen, Yu ;
Collins, R. ;
Farhi, E. ;
Fowler, A. ;
Gidney, C. ;
Giustina, M. ;
Graff, R. ;
Harrigan, M. ;
Huang, T. ;
Isakov, S., V ;
Jeffrey, E. ;
Jiang, Z. ;
Kafri, D. ;
Kechedzhi, K. ;
Klimov, P. ;
Korotkov, A. ;
Kostritsa, F. ;
Landhuis, D. ;
Lucero, E. ;
McClean, J. ;
McEwen, M. ;
Mi, X. ;
Mohseni, M. ;
Mutus, J. Y. ;
Naaman, O. ;
Neeley, M. ;
Niu, M. ;
Petukhov, A. ;
Quintana, C. ;
Rubin, N. ;
Sank, D. ;
Smelyanskiy, V .
PHYSICAL REVIEW LETTERS, 2020, 125 (12)