A semi-automated system for person re-identification adaptation to cross-outfit and cross-posture scenarios

被引:1
作者
Chanlongrat, Woravee [1 ]
Apichanapong, Teeravorn [1 ]
Sinngam, Pathompong [1 ]
Chaisangmongkon, Warasinee [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Inst Field Robot, Bangkok, Thailand
关键词
Person re-identification system; Clothing inconsistency; Video object segmentation; Person re-identification; Convolutional neural networks; Data labeling tools; CAMERA;
D O I
10.1007/s10489-021-02896-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Person re-identification (ReID) algorithms are often trained on multi-camera snapshots of individuals taken on the same day, wearing the same outfits. Models trained with such protocols often fail in many long-term, indoor applications where person matching must be done across days, necessitating that algorithms be able to adapt to changing clothing and body postures. This study presents a simple, yet effective, system to overcome this challenge in realistic settings. We collected a new dataset capturing the natural variations of office worker appearances across days. To teach a ReID algorithm to adapt, we designed a semi-automated identity labeling system that requires only a small set of identification inputs from human labelers. The system utilized instance segmentation algorithms to detect people and one-shot video segmentation algorithms to track individuals across frames. Identified footages are then fed into the image repository to continually fine-tune the ReID network. These experiments demonstrate the applicability of our proposed method in helping the ReID algorithm overcome the challenges of varied clothing and postures. Our system improves the performance (measured by mAP) compared to pre-trained benchmark by 2.46% for the standard ReID condition, by 18.19% for cross-outfit re-identification, by 22.94% for cross-posture re-identification, and by 19.17% for the cross-posture and cross-outfit setting. As such, we anticipate this method may be beneficial towards the multitude of applications that utilize machine vision to automatically recognize human subjects.
引用
收藏
页码:9501 / 9520
页数:20
相关论文
共 84 条
  • [1] [Anonymous], 2016, Person re-identification: Past, present and future
  • [2] CNN in MRF: Video Object Segmentation via Inference in A CNN-Based Higher-Order Spatio-Temporal MRF
    Bao, Linchao
    Wu, Baoyuan
    Liu, Wei
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5977 - 5986
  • [3] YOLACT plus plus Better Real-Time Instance Segmentation
    Bolya, Daniel
    Zhou, Chong
    Xiao, Fanyi
    Lee, Yong Jae
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) : 1108 - 1121
  • [4] YOLACT Real-time Instance Segmentation
    Bolya, Daniel
    Zhou, Chong
    Xiao, Fanyi
    Lee, Yong Jae
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9156 - 9165
  • [5] One-Shot Video Object Segmentation
    Caelles, S.
    Maninis, K. -K.
    Pont-Tuset, J.
    Leal-Taixe, L.
    Cremers, D.
    Van Gool, L.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5320 - 5329
  • [6] DCAN: Deep contour-aware networks for object instance segmentation from histology images
    Chen, Hao
    Qi, Xiaojuan
    Yu, Lequan
    Dou, Qi
    Qin, Jing
    Heng, Pheng-Ann
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 36 : 135 - 146
  • [7] Probability-Relevant Incipient Fault Detection and Diagnosis Methodology With Applications to Electric Drive Systems
    Chen, Hongtian
    Jiang, Bin
    Ding, Steven X.
    Lu, Ningyun
    Chen, Wen
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (06) : 2766 - 2773
  • [8] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [9] Beyond triplet loss: a deep quadruplet network for person re-identification
    Chen, Weihua
    Chen, Xiaotang
    Zhang, Jianguo
    Huang, Kaiqi
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1320 - 1329
  • [10] Custom Pictorial Structures for Re-identification
    Cheng, Dong Seon
    Cristani, Marco
    Stoppa, Michele
    Bazzani, Loris
    Murino, Vittorio
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,