Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia

被引:71
作者
Auchere, Francoise [1 ]
Santos, Renata
Planamente, Sara
Lesuisse, Emmanuel
Camadro, Jean-Michel
机构
[1] Univ Paris 06, CNRS, Inst Jacques Monod,UMR 7592, Dept Biol Genomes,Lab Ingn Prot & Control Metab, F-75251 Paris 05, France
关键词
D O I
10.1093/hmg/ddn178
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Friedreich's ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative stress. Glutathione is a major protective agent against oxidative damage and glutathione-related systems participate in maintaining the cellular thiol/disulfide status and the reduced environment of the cell. Here, we present the first detailed biochemical study of the glutathione-dependent redox status of wild-type and frataxin-deficient cells in a yeast model of the disease. There were five times less total glutathione (GSH+GSSG) in frataxin-deficient cells, imbalanced GSH/GSSG pools and higher glutathione peroxidase activity. The pentose phosphate pathway was stimulated in frataxin-deficient cells, glucose-6-phosphate dehydrogenase activity was three times higher than in wild-type cells and this was coupled to a defect in the NADPH/NADP(+) pool. Moreover, analysis of gene expression confirms the adaptative response of mutant cells to stress conditions and we bring evidence for a strong relation between the glutathione-dependent redox status of the cells and iron homeostasis. Dynamic studies show that intracellular glutathione levels reflect an adaptation of cells to iron stress conditions, and allow to distinguish constitutive stress observed in frataxin-deficient cells from the acute response of wild-type cells. In conclusion, our findings provide evidence for an impairment of glutathione homeostasis in a yeast model of Friedreich's ataxia and identify glutathione as a valuable indicator of the redox status of frataxin-deficient cells.
引用
收藏
页码:2790 / 2802
页数:13
相关论文
共 79 条
[1]   The role of glutathione transferases in cadmium stress [J].
Adamis, PDB ;
Gomes, DS ;
Pinto, MLCC ;
Panek, AD ;
Eleutherio, ECA .
TOXICOLOGY LETTERS, 2004, 154 (1-2) :81-88
[2]   Genetic dissection of the phospholipid hydroperoxidase activity of yeast Gpx3 reveals its functional importance [J].
Avery, AM ;
Willetts, SA ;
Avery, SV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (45) :46652-46658
[3]   Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases [J].
Avery, AM ;
Avery, SV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :33730-33735
[4]   Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin [J].
Babcock, M ;
deSilva, D ;
Oaks, R ;
DavisKaplan, S ;
Jiralerspong, S ;
Montermini, L ;
Pandolfo, M ;
Kaplan, J .
SCIENCE, 1997, 276 (5319) :1709-1712
[5]   TISSUE-SPECIFIC LEVELS OF HUMAN GLUCOSE-6-PHOSPHATE-DEHYDROGENASE CORRELATE WITH METHYLATION OF SPECIFIC SITES AT THE 3' END OF THE GENE [J].
BATTISTUZZI, G ;
DURSO, M ;
TONIOLO, D ;
PERSICO, GM ;
LUZZATTO, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (05) :1465-1469
[6]   Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae [J].
Bourbouloux, A ;
Shahi, P ;
Chakladar, A ;
Delrot, S ;
Bachhawat, AH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (18) :13259-13265
[7]   Oxidative stress and protease dysfunction in the yeast model of Friedreich ataxia [J].
Bulteau, Anne-Laure ;
Dancis, Andrew ;
Gareil, Monique ;
Montagne, Jean-Jacques ;
Camadro, Jean-Michel ;
Lesuisse, Emmanuel .
FREE RADICAL BIOLOGY AND MEDICINE, 2007, 42 (10) :1561-1570
[8]  
Bursell SE, 2000, CLIN CHEM, V46, P145
[9]   Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia [J].
Calabrese, V ;
Lodi, R ;
Tonon, C ;
D'Agata, V ;
Sapienza, M ;
Scapagnini, G ;
Mangiameli, A ;
Pennisi, G ;
Stella, AMG ;
Butterfield, DA .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2005, 233 (1-2) :145-162
[10]   Friedreich's ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion [J].
Campuzano, V ;
Montermini, L ;
Molto, MD ;
Pianese, L ;
Cossee, M ;
Cavalcanti, F ;
Monros, E ;
Rodius, F ;
Duclos, F ;
Monticelli, A ;
Zara, F ;
Canizares, J ;
Koutnikova, H ;
Bidichandani, SI ;
Gellera, C ;
Brice, A ;
Trouillas, P ;
DeMichele, G ;
Filla, A ;
DeFrutos, R ;
Palau, F ;
Patel, PI ;
DiDonato, S ;
Mandel, JL ;
Cocozza, S ;
Koenig, M ;
Pandolfo, M .
SCIENCE, 1996, 271 (5254) :1423-1427