On the regular sum-free sets

被引:4
作者
Wen, Zhi-Xiong [1 ]
Zhang, Jie-Meng [1 ]
Wu, Wen [2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[3] Univ Oulu, Dept Math Sci, Oulu 90014, Finland
基金
芬兰科学院;
关键词
D O I
10.1016/j.ejc.2015.02.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cameron introduced a bijection between the set of sum-free sets and the set of all zero-one sequences. In this paper, we study the sum-free sets of natural numbers corresponding to certain zero-one sequences which contain the Cantor-like sequences and some substitution sequences, etc. Such sum-free sets considered as integer sequences are 2-regular. We also prove that sequences corresponding to certain sum-free sets are automatic. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 56
页数:15
相关论文
共 13 条
[1]  
Allouche J.-P., 2003, AUTOMATIC SEQUENCES, DOI DOI 10.1017/CBO9780511546563
[2]   THE RING OF K-REGULAR SEQUENCES [J].
ALLOUCHE, JP ;
SHALLIT, J .
THEORETICAL COMPUTER SCIENCE, 1992, 98 (02) :163-197
[3]  
Calkin Neil J., 1996, EXP MATH, V5, P131
[4]  
Cameron P., 1987, Surveys in Combin, V123, P13
[5]   CYCLIC AUTOMORPHISMS OF A COUNTABLE GRAPH AND RANDOM SUM-FREE SETS [J].
CAMERON, PJ .
GRAPHS AND COMBINATORICS, 1985, 1 (02) :129-135
[6]   Notes on sum-free and related sets [J].
Cameron, PJ ;
Erdos, P .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :95-107
[7]  
CAMERON PJ, 1990, NUMBER THEORY /, P61
[8]  
Catkin Neil J., 1996, MATH P CAMBRIDGE PHI, V120, P1
[9]  
Catkin Neil J., 1988, THESIS U WATERLOO
[10]  
Catkin Neil J., 2005, ELECT J COMBIN NUMBE, V5