Regularity criteria for the 3D magneto-micropolar fluid equations in Besov spaces with negative indices

被引:10
作者
Guo, Congchong [2 ]
Zhang, Zujin [1 ]
Wang, Jialin [1 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Magneto micropolar fluid equations; Regularity criteria; Besov spaces; NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS;
D O I
10.1016/j.amc.2012.04.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the magneto-micropolar fluid equations in three space dimensions. It is proved that if the velocity, magnetic field and the micro-rotational velocity belong to some critical Besov space with negative indices, then the solution is in fact smooth. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:10755 / 10758
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 2010, Theory of Function Spaces
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]  
Chemin J. -Y., 1998, Perfect Incompressible Fluids
[4]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[5]  
Gala S., NONLINEAR DIFFER EQU
[6]   NOTE ON EXISTENCE AND UNIQUENESS OF SOLUTIONS OF MICROPOLAR FLUID EQUATIONS [J].
GALDI, GP ;
RIONERO, S .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1977, 15 (02) :105-108
[7]   On the regularity of weak solutions to the magnetohydrodynamic equations [J].
He, C ;
Xin, ZP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (02) :235-254
[8]   Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations [J].
Kozono, H ;
Shimada, Y .
MATHEMATISCHE NACHRICHTEN, 2004, 276 :63-74
[9]   One component regularity for the Navier-Stokes equations [J].
Kukavica, I ;
Ziane, M .
NONLINEARITY, 2006, 19 (02) :453-469
[10]   Navier-Stokes equations with regularity in one direction [J].
Kukavica, Igor ;
Ziane, Mohammed .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)