Fluid-structure system with boundary conditions involving the pressure

被引:6
作者
Casanova, Jean-Jerome [1 ]
机构
[1] Univ Paris 09, CEREMADE, CNRS, UMR 7534, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
关键词
Fluid-structure interaction; Navier-Stokes equations; Beam equation; Pressure boundary conditions; NAVIER-STOKES PROBLEMS; EXISTENCE; EQUATIONS;
D O I
10.1007/s00028-020-00581-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a coupled fluid-structure system involving boundary conditions on the pressure. The fluid is described by the incompressible Navier-Stokes equations in a 2D rectangular-type domain where the upper part of the domain is described by a damped Euler-Bernoulli beam equation. Existence and uniqueness of local strong solutions without assumptions of smallness on the initial data are proved.
引用
收藏
页码:107 / 149
页数:43
相关论文
共 23 条
[11]  
Conca C., 1994, Japan. J. Math. (N.S.), V20, P279, DOI DOI 10.4099/MATH1924.20.279
[12]   On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem [J].
da Veiga, H. Beirao .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2004, 6 (01) :21-52
[13]  
Girault V., 1986, FINITE ELEMENT METHO
[14]   Existence of local strong solutions to fluid-beam and fluid-rod interaction systems [J].
Grandmont, Celine ;
Hillairet, Matthieu ;
Lequeurre, Julien .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (04) :1105-1149
[15]   Existence of Global Strong Solutions to a Beam-Fluid Interaction System [J].
Grandmont, Celine ;
Hillairet, Matthieu .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (03) :1283-1333
[16]   EXISTENCE OF STRONG SOLUTIONS TO A FLUID-STRUCTURE SYSTEM [J].
Lequeurre, Julien .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (01) :389-410
[17]  
Lions J-L., 1972, Die Grundlehren der mathematischen Wissenschaften, V181
[18]  
Magenes E., 1972, Die Grundlehren der mathematischen Wissenschaften, V182
[19]   Existence of a Weak Solution to a Nonlinear Fluid-Structure Interaction Problem Modeling the Flow of an Incompressible, Viscous Fluid in a Cylinder with Deformable Walls [J].
Muha, Boris ;
Canic, Suncica .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (03) :919-968
[20]  
Pazy A., 1974, U MARYLAND LECT NOTE, V10