Prohibitin 1 Modulates Mitochondrial Stress-Related Autophagy in Human Colonic Epithelial Cells

被引:63
作者
Kathiria, Arwa S. [1 ]
Butcher, Lindsay D. [1 ,2 ]
Feagins, Linda A. [3 ]
Souza, Rhonda F. [3 ]
Boland, C. Richard [1 ]
Theiss, Arianne L. [1 ]
机构
[1] Baylor Univ, Med Ctr, Div Gastroenterol, Dept Internal Med,Baylor Res Inst, Dallas, TX USA
[2] Baylor Univ, Inst Biomed Studies, Waco, TX 76798 USA
[3] Univ Texas SW Med Ctr Dallas, Dept Med, Vet Affairs N Texas Hlth Care Syst, Dallas, TX 75390 USA
来源
PLOS ONE | 2012年 / 7卷 / 02期
基金
美国国家卫生研究院;
关键词
INFLAMMATORY-BOWEL-DISEASE; GENOME-WIDE ASSOCIATION; NF-KAPPA-B; NECROSIS-FACTOR-ALPHA; ULCERATIVE-COLITIS; OXIDATIVE STRESS; CROHNS-DISEASE; SUSCEPTIBILITY LOCI; RESPIRATORY-CHAIN; IN-VITRO;
D O I
10.1371/journal.pone.0031231
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introduction: Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF alpha), both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB), which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells. Methods: We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNF alpha- and IFN gamma-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A(1) or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine. Results: TNFa and IFN gamma-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNF alpha-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability. Conclusions: Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells susceptible to mitochondrial damage and cytotoxicity. Repletion of PHB may represent a therapeutic approach to combat oxidant and cytokine-induced mitochondrial damage in diseases such as inflammatory bowel disease.
引用
收藏
页数:12
相关论文
共 62 条
  • [1] Autophagy in human tumors: cell survival or death?
    Alva, AS
    Gultekin, SH
    Baehrecke, EH
    [J]. CELL DEATH AND DIFFERENTIATION, 2004, 11 (09) : 1046 - 1048
  • [2] Prohibitin and mitochondrial biology
    Artal-Sanz, Marta
    Tavernarakis, Nektarios
    [J]. TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2009, 20 (08) : 394 - 401
  • [3] Tumor necrosis factor-α and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis
    Baregamian, Naira
    Song, Jun
    Bailey, C. Eric
    Papaconstantinou, John
    Evers, B. Mark
    Chung, Dai H.
    [J]. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2009, 2 (05) : 297 - 306
  • [4] Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease
    Barrett, Jeffrey C.
    Hansoul, Sarah
    Nicolae, Dan L.
    Cho, Judy H.
    Duerr, Richard H.
    Rioux, John D.
    Brant, Steven R.
    Silverberg, Mark S.
    Taylor, Kent D.
    Barmada, M. Michael
    Bitton, Alain
    Dassopoulos, Themistocles
    Datta, Lisa Wu
    Green, Todd
    Griffiths, Anne M.
    Kistner, Emily O.
    Murtha, Michael T.
    Regueiro, Miguel D.
    Rotter, Jerome I.
    Schumm, L. Philip
    Steinhart, A. Hillary
    Targan, Stephan R.
    Xavier, Ramnik J.
    Libioulle, Cecile
    Sandor, Cynthia
    Lathrop, Mark
    Belaiche, Jacques
    Dewit, Olivier
    Gut, Ivo
    Heath, Simon
    Laukens, Debby
    Mni, Myriam
    Rutgeerts, Paul
    Van Gossum, Andre
    Zelenika, Diana
    Franchimont, Denis
    Hugot, Jean-Pierre
    de Vos, Martine
    Vermeire, Severine
    Louis, Edouard
    Cardon, Lon R.
    Anderson, Carl A.
    Drummond, Hazel
    Nimmo, Elaine
    Ahmad, Tariq
    Prescott, Natalie J.
    Onnie, Clive M.
    Fisher, Sheila A.
    Marchini, Jonathan
    Ghori, Jilur
    [J]. NATURE GENETICS, 2008, 40 (08) : 955 - 962
  • [5] Autophagosomes and human diseases
    Beau, Isabelle
    Mehrpour, Maryam
    Codogno, Patrice
    [J]. INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2011, 43 (04) : 460 - 464
  • [6] Disruption of p53 in human cancer cells alters the responses to therapeutic agents
    Bunz, F
    Hwang, PM
    Torrance, C
    Waldman, T
    Zhang, YG
    Dillehay, L
    Williams, J
    Lengauer, C
    Kinzler, KW
    Vogelstein, B
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (03) : 263 - 269
  • [7] Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
    Burton, Paul R.
    Clayton, David G.
    Cardon, Lon R.
    Craddock, Nick
    Deloukas, Panos
    Duncanson, Audrey
    Kwiatkowski, Dominic P.
    McCarthy, Mark I.
    Ouwehand, Willem H.
    Samani, Nilesh J.
    Todd, John A.
    Donnelly, Peter
    Barrett, Jeffrey C.
    Davison, Dan
    Easton, Doug
    Evans, David
    Leung, Hin-Tak
    Marchini, Jonathan L.
    Morris, Andrew P.
    Spencer, Chris C. A.
    Tobin, Martin D.
    Attwood, Antony P.
    Boorman, James P.
    Cant, Barbara
    Everson, Ursula
    Hussey, Judith M.
    Jolley, Jennifer D.
    Knight, Alexandra S.
    Koch, Kerstin
    Meech, Elizabeth
    Nutland, Sarah
    Prowse, Christopher V.
    Stevens, Helen E.
    Taylor, Niall C.
    Walters, Graham R.
    Walker, Neil M.
    Watkins, Nicholas A.
    Winzer, Thilo
    Jones, Richard W.
    McArdle, Wendy L.
    Ring, Susan M.
    Strachan, David P.
    Pembrey, Marcus
    Breen, Gerome
    St Clair, David
    Caesar, Sian
    Gordon-Smith, Katherine
    Jones, Lisa
    Fraser, Christine
    Green, Elain K.
    [J]. NATURE, 2007, 447 (7145) : 661 - 678
  • [8] A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
    Cadwell, Ken
    Liu, John Y.
    Brown, Sarah L.
    Miyoshi, Hiroyuki
    Loh, Joy
    Lennerz, Jochen K.
    Kishi, Chieko
    Kc, Wumesh
    Carrero, Javier A.
    Hunt, Steven
    Stone, Christian D.
    Brunt, Elizabeth M.
    Xavier, Ramnik J.
    Sleckman, Barry P.
    Li, Ellen
    Mizushima, Noboru
    Stappenbeck, Thaddeus S.
    Virgin, Herbert W.
    [J]. NATURE, 2008, 456 (7219) : 259 - U62
  • [9] Autophagy facilitates an IFN-γ response and signal transduction
    Chang, Yu-Ping
    Chen, Chia-Ling
    Chen, Su-O
    Lin, Yee-Shin
    Tsai, Cheng-Chieh
    Huang, Wei-Ching
    Wang, Chi-Yun
    Hsieh, Chia-Yuan
    Choi, Pui-Ching
    Lin, Chiou-Feng
    [J]. MICROBES AND INFECTION, 2011, 13 (11) : 888 - 894
  • [10] Is mitochondrial generation of reactive oxygen species a trigger for autophagy?
    Chen, Yongqiang
    Gibson, Spencer B.
    [J]. AUTOPHAGY, 2008, 4 (02) : 246 - 248