Looking Closer at the Scene: Multiscale Representation Learning for Remote Sensing Image Scene Classification

被引:137
作者
Wang, Qi [1 ,2 ]
Huang, Wei [1 ,2 ]
Xiong, Zhitong [1 ,2 ]
Li, Xuelong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Ctr Opt Imagery Anal & Learning Optimal, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Learning systems; Streaming media; Object detection; Task analysis; Image coding; Convolutional neural network (CNN); multiscale representation; remote sensing; scene classification; structured key area localization (SKAL); CONVOLUTIONAL NEURAL-NETWORKS; INVARIANT;
D O I
10.1109/TNNLS.2020.3042276
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remote sensing image scene classification has attracted great attention because of its wide applications. Although convolutional neural network (CNN)-based methods for scene classification have achieved excellent results, the large-scale variation of the features and objects in remote sensing images limits the further improvement of the classification performance. To address this issue, we present multiscale representation for scene classification, which is realized by a global-local two-stream architecture. This architecture has two branches of the global stream and local stream, which can individually extract the global features and local features from the whole image and the most important area. In order to locate the most important area in the whole image using only image-level labels, a weakly supervised key area detection strategy of structured key area localization (SKAL) is specially designed to connect the above two streams. To verify the effectiveness of the proposed SKAL-based two-stream architecture, we conduct comparative experiments based on three widely used CNN models, including AlexNet, GoogleNet, and ResNet18, on four public remote sensing image scene classification data sets, and achieve the state-of-the-art results on all the four data sets. Our codes are provided in https://github.com/hw2hwei/SKAL.
引用
收藏
页码:1414 / 1428
页数:15
相关论文
共 62 条
[1]  
[Anonymous], 2017, ARXIV170301290
[2]   Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification [J].
Anwer, Rao Muhammad ;
Khan, Fahad Shahbaz ;
van de Weijer, Joost ;
Molinier, Matthieu ;
Laaksonen, Jorma .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 138 :74-85
[3]   Modeling and detection of geospatial objects using texture motifs [J].
Bhagavathy, Sitaram ;
Manjunath, B. S. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (12) :3706-3715
[4]   Fusing Local and Global Features for High-Resolution Scene Classification [J].
Bian, Xiaoyong ;
Chen, Chen ;
Tian, Long ;
Du, Qian .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (06) :2889-2901
[5]   Weakly Supervised Deep Detection Networks [J].
Bilen, Hakan ;
Vedaldi, Andrea .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2846-2854
[6]   Deep Feature Fusion for VHR Remote Sensing Scene Classification [J].
Chaib, Souleyman ;
Liu, Huan ;
Gu, Yanfeng ;
Yao, Hongxun .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08) :4775-4784
[7]   Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection [J].
Cheng, Gong ;
Han, Junwei ;
Zhou, Peicheng ;
Xu, Dong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) :265-278
[8]   When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs [J].
Cheng, Gong ;
Yang, Ceyuan ;
Yao, Xiwen ;
Guo, Lei ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05) :2811-2821
[9]   Remote Sensing Image Scene Classification: Benchmark and State of the Art [J].
Cheng, Gong ;
Han, Junwei ;
Lu, Xiaoqiang .
PROCEEDINGS OF THE IEEE, 2017, 105 (10) :1865-1883
[10]   Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images [J].
Cheng, Gong ;
Zhou, Peicheng ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :7405-7415