The Japanese Mutant Aβ (ΔE22-Aβ1-39) Forms Fibrils Instantaneously, with Low-Thioflavin T Fluorescence: Seeding of Wild-Type Aβ1-40 into Atypical Fibrils by ΔE22-Aβ1-39

被引:82
作者
Cloe, Adam L. [1 ]
Orgel, Joseph P. R. O. [2 ,3 ,4 ]
Sachleben, Joseph R.
Tycko, Robert [5 ,7 ]
Meredith, Stephen C. [1 ,6 ]
机构
[1] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
[2] IIT, Pritzker Inst Biomed Sci & Engn, BioCAT & uCoSM, Chicago, IL 60616 USA
[3] IIT, CSRRI, Chicago, IL 60616 USA
[4] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA
[5] NIDDK, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
[6] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[7] Univ Chicago, Shared Res Facil, Biomol NMR Facil, Chicago, IL 60637 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
HEREDITARY CEREBRAL-HEMORRHAGE; ALZHEIMERS-DISEASE; AMYLOID FIBRILS; EXPERIMENTAL CONSTRAINTS; MOLECULAR-MECHANISM; SYNAPTIC ALTERATION; STRUCTURAL BASIS; PROTEIN; SHEET; BINDING;
D O I
10.1021/bi1016217
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Delta E693 (Japanese) mutation of the beta-amyloid precursor protein leads to production of Delta E22-A beta peptides such as Delta E22-A beta(1-39). Despite reports that these peptides do not form fibrils, here we show that, on the contrary, the peptide forms fibrils essentially instantaneously. The fibrils are typical amyloid fibrils in all respects except that they cause only low levels of thioflavin T (ThT) fluorescence, which, however, develops with no lag phase. The fibrils bind ThT, but with a lower affinity and a smaller number of binding sites than wild-type (WT) A beta(1-40). Fluorescence depolarization confirms extremely rapid aggregation of Delta E22-A beta(1-39). Size exclusion chromatography (SEC) indicates very low concentrations of soluble monomer and oligomer, but only in the presence of some organic solvent, e.g., 2% (v/v) DMSO. The critical concentration is approximately 1 order of magnitude lower for Delta E22-A beta(1-39) than for WT A beta(1-40). Several lines of evidence point to an altered structure for Delta E22-A beta(1-39) compared to that of WT A beta(1-40) fibrils. In addition to differences in ThT binding and fluorescence, PITHIRDS-CT solid-state nuclear magnetic resonance (NMR) measurements of Delta E22-A beta(1-39) are not compatible with the parallel in-register beta-sheet generally observed for WT A beta(1-40) fibrils. X-ray fibril diffraction showed different D spacings: 4.7 and 10.4 A for WT A beta(1-40) and 4.7 and 9.6 angstrom for Delta E22-A beta(1-39). Equimolar mixtures of Delta E22-A beta(1-39) and WT A beta(1-40) also produced fibrils extremely rapidly, and by the criteria of ThT fluorescence and electron microscopic appearance, they were the same as fibrils made from pure Delta E22-A beta(1-39). X-ray diffraction of fibrils formed from 1:1 molar mixtures of Delta E22-A beta(1-39) and WT A beta(1-40) showed the same D spacings as fibrils of the pure mutant peptide, not the wild-type peptide. These findings are consistent with extremely rapid nucleation by Delta E22-A beta(1-39), followed by fibril extension by WT A beta(1-40), and "conversion" of the wild type peptide to a structure similar to that of the mutant peptide, in a manner reminiscent of the prion conversion phenomenon.
引用
收藏
页码:2026 / 2039
页数:14
相关论文
共 49 条
[1]   Supramolecular structure in full-length Alzheimer's β-amyloid fibrils:: Evidence for a parallel β-sheet organization from solid-state nuclear magnetic resonance [J].
Balbach, JJ ;
Petkova, AT ;
Oyler, NA ;
Antzutkin, ON ;
Gordon, DJ ;
Meredith, SC ;
Tycko, R .
BIOPHYSICAL JOURNAL, 2002, 83 (02) :1205-1216
[2]   Molecular mechanism of Thioflavin-T binding to amyloid fibrils [J].
Biancalana, Matthew ;
Koide, Shohei .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2010, 1804 (07) :1405-1412
[3]   Molecular Mechanism of Thioflavin-T Binding to the Surface of β-Rich Peptide Self-Assemblies [J].
Biancalana, Matthew ;
Makabe, Koki ;
Koide, Akiko ;
Koide, Shohei .
JOURNAL OF MOLECULAR BIOLOGY, 2009, 385 (04) :1052-1063
[4]   Neurotoxic protein oligomers - what you see is not always what you get [J].
Bitan, G ;
Fradinger, EA ;
Spring, SM ;
Teplow, DB .
AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS, 2005, 12 (02) :88-95
[5]   Prion Diseases and Their Biochemical Mechanisms [J].
Cobb, Nathan J. ;
Surewicz, Witold K. .
BIOCHEMISTRY, 2009, 48 (12) :2574-2585
[6]   Presenile Alzheimer dementia characterized by amyloid angiopathy and large amyloid core type senile plaques in the APP 692Ala→Gly mutation [J].
Cras, P ;
van Harskamp, F ;
Hendriks, L ;
Ceuterick, C ;
van Duijn, CM ;
Stefanko, SZ ;
Hofman, A ;
Kros, JM ;
Van Broeckhoven, C ;
Martin, JJ .
ACTA NEUROPATHOLOGICA, 1998, 96 (03) :253-260
[7]   Origins and kinetic consequences of diversity in Sup35 yeast prion fibers [J].
DePace, AH ;
Weissman, JS .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (05) :389-396
[8]   The Recombinant Amyloid-β Peptide Aβ1-42 Aggregates Faster and Is More Neurotoxic than Synthetic Aβ1-42 [J].
Finder, Verena H. ;
Vodopivec, Ivana ;
Nitsch, Roger M. ;
Glockshuber, Rudi .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 396 (01) :9-18
[9]   Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy [J].
Grabowski, TJ ;
Cho, HS ;
Vonsattel, JPG ;
Rebeck, GW ;
Greenberg, SM .
ANNALS OF NEUROLOGY, 2001, 49 (06) :697-705
[10]   ALZHEIMERS-DISEASE - THE AMYLOID CASCADE HYPOTHESIS [J].
HARDY, JA ;
HIGGINS, GA .
SCIENCE, 1992, 256 (5054) :184-185