On a mixed finite element formulation of a second-order quasilinear problem in the plane

被引:8
作者
Meddahi, S [1 ]
机构
[1] Univ Oviedo, Dept Math, Oviedo 33007, Spain
关键词
quasilinear problem; finite element formulation; Raviart-Thomas space;
D O I
10.1002/num.10077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a mixed finite element discretization of a second-order quasilinear problem based on the Raviart-Thomas space. We prove that the discrete problem is solvable and provide a local uniqueness result for the solution. We also obtain optimal order L-2-error estimates for both the scalar variable and the associated flux. The main feature of our method is that it is free from the boundness conditions required in previous works on the coefficients of the quasilinear operator. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:90 / 103
页数:14
相关论文
共 17 条
[1]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[2]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[3]  
DOUGLAS J, 1975, MATH COMPUT, V29, P689, DOI 10.1090/S0025-5718-1975-0431747-2
[4]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9
[5]   On the numerical analysis of nonlinear twofold saddle point problems [J].
Gatica, GN ;
Heuer, N ;
Meddahi, S .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (02) :301-330
[6]  
Gatica GN, 2001, MATH COMPUT, V70, P1461, DOI 10.1090/S0025-5718-00-01267-9
[7]   An expanded mixed finite element approach via a dual-dual formulation and the minimum residual method [J].
Gatica, GN ;
Heuer, N .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) :371-385
[8]  
Girault V., 1986, FINITE ELEMENT APPRO
[9]  
JOHNSON C, 1975, MATH COMPUT, V29, P343, DOI 10.1090/S0025-5718-1975-0400741-X
[10]  
LEE M., 1996, Numer. Methods Partial Differential Equations, V12, P729