A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy

被引:62
作者
Epperly, Rebecca [1 ,2 ]
Gottschalk, Stephen [2 ]
Velasquez, M. Paulina [2 ]
机构
[1] St Jude Childrens Res Hosp, Dept Oncol, 332 N Lauderdale St, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Bone Marrow Transplantat & Cellular Therapy, 332 N Lauderdale St, Memphis, TN 38105 USA
关键词
chimeric antigen receptor; cellular therapy; immunotherapy; acute myeloid leukemia; microenvironment; ACUTE MYELOID-LEUKEMIA; CHIMERIC ANTIGEN RECEPTORS; ACUTE MYELOGENOUS LEUKEMIA; BONE-MARROW ADIPOCYTES; NATURAL-KILLER-CELLS; IN-VIVO EXPANSION; SUPPRESSOR-CELLS; NK CELLS; INDOLEAMINE 2,3-DIOXYGENASE; EXTRAMEDULLARY RELAPSE;
D O I
10.3389/fonc.2020.00262
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Chimeric antigen receptor (CAR) T cells targeting CD19 have been successful treating patients with relapsed/refractory B cell acute lymphoblastic leukemia (ALL) and B cell lymphomas. However, relapse after CAR T cell therapy is still a challenge. In addition, preclinical and early clinical studies targeting acute myeloid leukemia (AML) have not been as successful. This can be attributed in part to the presence of an AML microenvironment that has a dampening effect on the antitumor activity of CAR T cells. The AML microenvironment includes cellular interactions, soluble environmental factors, and structural components. Suppressive immune cells including myeloid derived suppressor cells and regulatory T cells are known to inhibit T cell function. Environmental factors contributing to T cell exhaustion, including immune checkpoints, anti-inflammatory cytokines, chemokines, and metabolic alterations, impact T cell activity, persistence, and localization. Lastly, structural factors of the bone marrow niche, secondary lymphoid organs, and extramedullary sites provide opportunities for CAR T cell evasion by AML blasts, contributing to treatment resistance and relapse. In this review we discuss the effect of the AML microenvironment on CAR T cell function. We highlight opportunities to enhance CAR T cell efficacy for AML through manipulating, targeting, and evading the anti-inflammatory leukemic microenvironment.
引用
收藏
页数:10
相关论文
共 138 条
[1]   IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor [J].
Adachi, Keishi ;
Kano, Yosuke ;
Nagai, Tomohiko ;
Okuyama, Namiko ;
Sakoda, Yukimi ;
Tamada, Koji .
NATURE BIOTECHNOLOGY, 2018, 36 (04) :346-+
[2]   Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner [J].
Al-Matary, Yahya S. ;
Botezatu, Lacramioara ;
Opalka, Bertram ;
Hoenes, Judith M. ;
Lams, Robert F. ;
Thivakaran, Aniththa ;
Schuette, Judith ;
Koester, Renata ;
Lennartz, Klaus ;
Schroeder, Thomas ;
Haas, Rainer ;
Duehrsen, Ulrich ;
Khandanpour, Cyrus .
HAEMATOLOGICA, 2016, 101 (10) :1216-1227
[3]   Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment [J].
Arai, Yasuyuki ;
Choi, Uimook ;
Corsino, Cristina I. ;
Koontz, Sherry M. ;
Tajima, Masaki ;
Sweeney, Colin L. ;
Black, Mary A. ;
Feldman, Steven A. ;
Dinauer, Mary C. ;
Malech, Harry L. .
MOLECULAR THERAPY, 2018, 26 (05) :1181-1197
[4]   Overexpression of indoleamine 2,3-dioxygenase correlates with regulatory T cell phenotype in acute myeloid leukemia patients with normal karyotype [J].
Arandi, Nargess ;
Ramzi, Mani ;
Safaei, Fatemeh ;
Monabati, Ahmad .
BLOOD RESEARCH, 2018, 53 (04) :294-298
[5]   Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support [J].
Azadniv, Mitra ;
Myers, Jason R. ;
McMurray, Helene R. ;
Guo, Naxin ;
Rock, Phil ;
Coppage, Myra L. ;
Ashton, John ;
Becker, Michael W. ;
Calvi, Laura M. ;
Liesveld, Jane L. .
LEUKEMIA, 2020, 34 (02) :391-403
[6]   Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy [J].
Beavis, Paul A. ;
Henderson, Melissa A. ;
Giuffrida, Lauren ;
Mills, Jane K. ;
Sek, Kevin ;
Cross, Ryan S. ;
Davenport, Alexander J. ;
John, Liza B. ;
Mardiana, Sherly ;
Slaney, Clare Y. ;
Johnstone, Ricky W. ;
Trapani, Joseph A. ;
Stagg, John ;
Loi, Sherene ;
Kats, Lev ;
Gyorki, David ;
Kershaw, Michael H. ;
Darcy, Phillip K. .
JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (03) :929-941
[7]   Advances in immunotherapy for pediatric acute myeloid leukemia [J].
Bonifant, Challice L. ;
Velasquez, Mireya Paulina ;
Gottschalk, Stephen .
EXPERT OPINION ON BIOLOGICAL THERAPY, 2018, 18 (01) :51-63
[8]   Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards [J].
Bronte, Vincenzo ;
Brandau, Sven ;
Chen, Shu-Hsia ;
Colombo, Mario P. ;
Frey, Alan B. ;
Greten, Tim F. ;
Mandruzzato, Susanna ;
Murray, Peter J. ;
Ochoa, Augusto ;
Ostrand-Rosenberg, Suzanne ;
Rodriguez, Paulo C. ;
Sica, Antonio ;
Umansky, Viktor ;
Vonderheide, Robert H. ;
Gabrilovich, Dmitry I. .
NATURE COMMUNICATIONS, 2016, 7
[9]  
Budde L, 2017, BLOOD, V130
[10]   Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T [J].
Burga, Rachel A. ;
Thorn, Mitchell ;
Point, Gary R. ;
Guha, Prajna ;
Nguyen, Cang T. ;
Licata, Lauren A. ;
DeMatteo, Ronald P. ;
Ayala, Alfred ;
Espat, N. Joseph ;
Junghans, Richard P. ;
Katz, Steven C. .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2015, 64 (07) :817-829