Convexity and robustness of the Renyi entropy

被引:7
作者
Buryak, Filipp [1 ]
Mishura, Yuliya [1 ]
机构
[1] Kyiv Natl Taras Shevchenko Univ, Fac Mech & Math, Dept Probabil Theory Stat & Actuarial Math, Volodymyrska 64, UA-01601 Kiev, Ukraine
来源
MODERN STOCHASTICS-THEORY AND APPLICATIONS | 2021年 / 8卷 / 03期
关键词
Discrete distribution; Renyi entropy; convexity; DIVERGENCE;
D O I
10.15559/21-VMSTA185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study convexity properties of the Renyi entropy as function of alpha > 0 on finite alphabets. We also describe robustness of the Renyi entropy on finite alphabets, and it turns out that the rate of respective convergence depends on initial alphabet. We establish convergence of the disturbed entropy when the initial distribution is uniform but the number of events increases to infinity and prove that the limit of Renyi entropy of the binomial distribution is equal to Renyi entropy of the Poisson distribution.
引用
收藏
页码:387 / 412
页数:26
相关论文
共 16 条
  • [1] Acharya Jayadev, 2014, P 26 ANN ACM SIAM S, P1855, DOI DOI 10.1137/1.9781611973730.124
  • [2] Banna O., 2019, Fractional Brownian motion. Approximations and projections
  • [3] Distance from fractional Brownian motion with associated Hurst index 0 < H < 1/2 to the subspaces of Gaussian martingales involving power integrands with an arbitrary positive exponent
    Banna, Oksana
    Buryak, Filipp
    Mishura, Yuliya
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2020, 7 (02): : 191 - 202
  • [4] Bégin L, 2016, JMLR WORKSH CONF PRO, V51, P435
  • [5] Bobkov S.G., ARXIV200711030V1MATH
  • [6] Erven T., 2010, IEEE T INFORM THEORY
  • [7] Renyi divergence measures for commonly used univariate continuous distributions
    Gil, M.
    Alajaji, F.
    Linder, T.
    [J]. INFORMATION SCIENCES, 2013, 249 : 124 - 131
  • [8] On the robustness of q-expectation values and Renyi entropy
    Hanel, R.
    Thurner, S.
    Tsallis, C.
    [J]. EPL, 2009, 85 (02)
  • [9] Interpretations of Renyi entropies and divergences
    Harremoës, P
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) : 57 - 62
  • [10] Binomial and Poisson distributions as maximum entropy distributions
    Harremoës, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) : 2039 - 2041