On group theoretical Hopf algebras and exact factorizations of finite groups

被引:52
作者
Natale, S [1 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, F-75230 Paris 05, France
关键词
D O I
10.1016/S0021-8693(03)00464-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a semisimple Hopf algebra A is group theoretical if and only if its Drinfeld double is a twisting of the Dijkgraaf-Pasquier-Roche quasi-Hopf algebra D-omega(Sigma), for some finite group Sigma and some omega is an element of Z(3) (Sigma, k(x)). We show that semisimple Hopf algebras obtained as bicrossed products from an exact factorization of a finite group Sigma are group theoretical. We also describe their Drinfeld double as a twisting of D-omega(Sigma), for an appropriate 3-cocycle omega coming from the Kac exact sequence. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 211
页数:13
相关论文
共 17 条
[1]  
ANDRUSKIEWITSCH N, 2002, CONT MATH, V294
[2]   Finite group factorizations and braiding [J].
Beggs, EJ ;
Gould, JD ;
Majid, S .
JOURNAL OF ALGEBRA, 1996, 181 (01) :112-151
[3]  
Dijkgraaf R., 1990, P INT C MOD QUANT FI, P375
[4]  
Etingof P, 2002, INT MATH RES NOTICES, V2002, P757
[5]  
ETINGOF P, 2002, MATHQA0203060
[6]  
KAC G. I., 1968, MATH USSR SB, V5, P451, DOI DOI 10.1070/SM1968V005N03ABEH003627
[7]   PHYSICS FOR ALGEBRAISTS - NONCOMMUTATIVE AND NONCOCOMMUTATIVE HOPF-ALGEBRAS BY A BICROSSPRODUCT CONSTRUCTION [J].
MAJID, S .
JOURNAL OF ALGEBRA, 1990, 130 (01) :17-64
[8]   Quantum double for quasi-Hopf algebras [J].
Majid, S .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 45 (01) :1-9
[9]  
Masuoka A, 2002, MATH SCI R, V43, P167
[10]  
MASUOKA A, 1999, TRABAJOS MATEMATICA, V41