The relationship between three-dimensional knee MRI bone shape and total knee replacement-a case control study: data from the Osteoarthritis Initiative

被引:41
作者
Barr, Andrew J. [1 ,2 ]
Dube, Bright [1 ,2 ]
Hensor, Elizabeth M. A. [1 ,2 ]
Kingsbury, Sarah R. [1 ,2 ]
Peat, George [3 ]
Bowes, Mike A. [4 ]
Sharples, Linda D. [5 ]
Conaghan, Philip G. [1 ,2 ]
机构
[1] Univ Leeds, Leeds Inst Rheumat & Musculoskeletal Med, Leeds, W Yorkshire, England
[2] Univ Leeds, NIHR Leeds Musculoskeletal Biomed Res Unit, Leeds, W Yorkshire, England
[3] Keele Univ, Arthrit Res UK Primary Care Ctr, Res Inst Primary Care & Hlth Sci, Keele, Staffs, England
[4] Imorph Ltd, Kilburn House, Manchester, Lancs, England
[5] Univ Leeds, Leeds Inst Clin Trials Res, Leeds, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
osteoarthritis; knee; magnetic resonance imaging; 3D bone shape; active appearance modelling; total knee replacement; RADIOGRAPHIC OSTEOARTHRITIS; ARTICULAR-CARTILAGE; PROPENSITY SCORE; NATURAL-HISTORY; PREDICT; AREA; DEFECTS; DISEASE; MODELS; SIZE;
D O I
10.1093/rheumatology/kew191
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. There is growing understanding of the importance of bone in OA. Our aim was to determine the relationship between 3D MRI bone shape and total knee replacement (TKR). Methods. A nested case-control study within the Osteoarthritis Initiative cohort identified case knees with confirmed TKR for OA and controls that were matched using propensity scores. Active appearance modelling quantification of the bone shape of all knee bones identified vectors between knees having or not having OA. Vectors were scaled such that -1 and +1 represented the mean non-OA and mean OA shapes. Results. Compared to controls (n = 310), TKR cases (n = 310) had a more positive mean baseline 3D bone shape vector, indicating more advanced structural OA, for the femur [mean 0.98 vs -0.11; difference (95% CI) 1.10 (0.88, 1.31)], tibia [mean 0.86 vs -0.07; difference (95% CI) 0.94 (0.72, 1.16)] and patella [mean 0.95 vs 0.03; difference (95% CI) 0.92 (0.65, 1.20)]. Odds ratios (95% CI) for TKR per normalized unit of 3D bone shape vector for the femur, tibia and patella were: 1.85 (1.59, 2.16), 1.64 (1.42, 1.89) and 1.36 (1.22, 1.50), respectively, all P < 0.001. After including Kellgren-Lawrence grade in a multivariable analysis, only the femur 3D shape vector remained significantly associated with TKR [odds ratio 1.24 (1.02, 1.51)]. Conclusion. 3D bone shape was associated with the endpoint of this study, TKR, with femoral shape being most associated. This study contributes to the validation of quantitative MRI bone biomarkers for OA structure-modification trials.
引用
收藏
页码:1585 / 1593
页数:9
相关论文
共 45 条
  • [1] A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
    Austin, Peter C.
    Grootendorst, Paul
    Anderson, Geoffrey M.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (04) : 734 - 753
  • [2] An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies
    Austin, Peter C.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (03) : 399 - 424
  • [3] The relationship between clinical characteristics, radiographic osteoarthritis and 3D bone area: data from the Osteoarthritis Initiative
    Barr, A. J.
    Dube, B.
    Hensor, E. M. A.
    Kingsbury, S. R.
    Peat, G.
    Bowes, M. A.
    Conaghan, P. G.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (10) : 1703 - 1709
  • [4] Osteoarthritis: an update with relevance for clinical practice
    Bijlsma, Johannes W. J.
    Berenbaum, Francis
    Lafeber, Foris P. J. G.
    [J]. LANCET, 2011, 377 (9783) : 2115 - 2126
  • [5] A novel method for bone area measurement provides new insights into osteoarthritis and its progression
    Bowes, Michael A.
    Vincent, Graham R.
    Wolstenholme, Christopher B.
    Conaghan, Philip G.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2015, 74 (03) : 519 - 525
  • [6] Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years
    Carnes, J.
    Stannus, O.
    Cicuttini, Flavia M.
    Ding, C.
    Jones, G.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2012, 20 (12) : 1541 - 1547
  • [7] Boning up on Wolff's Law: Mechanical regulation of the cells that make and maintain bone
    Chen, Jan-Hung
    Liu, Chao
    You, Lidan
    Simmons, Craig A.
    [J]. JOURNAL OF BIOMECHANICS, 2010, 43 (01) : 108 - 118
  • [8] Active appearance models
    Cootes, TF
    Edwards, GJ
    Taylor, CJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (06) : 681 - 685
  • [9] The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study
    Cross, Marita
    Smith, Emma
    Hoy, Damian
    Nolte, Sandra
    Ackerman, Ilana
    Fransen, Marlene
    Bridgett, Lisa
    Williams, Sean
    Guillemin, Francis
    Hill, Catherine L.
    Laslett, Laura L.
    Jones, Graeme
    Cicuttini, Flavia M.
    Osborne, Richard
    Vos, Theo
    Buchbinder, Rachelle
    Woolf, Anthony
    March, Lyn
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 (07) : 1323 - 1330
  • [10] Updating the OMERACT Filter: Implications for Imaging and Soluble Biomarkers
    D'Agostino, Maria-Antonietta
    Boers, Maarten
    Kirwan, John
    van der Heijde, Desiree
    Ostergaard, Mikkel
    Schett, Georg
    Landewe, Robert B.
    Maksymowych, Walter P.
    Naredo, Esperanza
    Dougados, Maxime
    Iagnocco, Annamaria
    Bingham, Clifton O., III
    Brooks, Peter M.
    Beaton, Dorcas E.
    Gandjbakhch, Frederique
    Gossec, Laure
    Guillemin, Francis
    Hewlett, Sarah E.
    Kloppenburg, Margreet
    March, Lyn
    Mease, Philip J.
    Moller, Ingrid
    Simon, Lee S.
    Singh, Jasvinder A.
    Strand, Vibeke
    Wakefield, Richard J.
    Wells, George A.
    Tugwell, Peter
    Conaghan, Philip G.
    [J]. JOURNAL OF RHEUMATOLOGY, 2014, 41 (05) : 1016 - 1024