On some geometric properties of quasi-sum production models

被引:31
作者
Chen, Bang-Yen [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
Production function; Quasi-linear production function; Quasi-sum production model; Gauss-Kronecker curvature; Flat space;
D O I
10.1016/j.jmaa.2012.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A production function f is called quasi-sum if there are continuous strict monotone functions F, h(1), ... , h(n) with F > 0 such that f (x) = F (h(1) (x(1)) + ... + h(n)(x(n))) (cf. Aczel and Maksa (1996)[1]). A quasi-sum production function is called quasi-linear if at most one of F, h(1), ... , h(n) is a nonlinear function. For a production function!, the graph of f is called the production hypersurface off. In this paper, we obtain a very simple necessary and sufficient condition for a quasi-sum production function f to be quasi-linear in terms of graph of f. Moreover, we completely classify quasi-sum production functions whose production hypersurfaces have vanishing Gauss-Kronecker curvature. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:192 / 199
页数:8
相关论文
共 11 条
[1]   Solution of the rectangular mxn generalized bisymmetry equation and of the problem of consistent aggregation [J].
Aczel, J ;
Maksa, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (01) :104-126
[2]  
Allen RGD, 1934, ECONOMICA-NEW SER, V1, P196
[3]   CAPITAL-LABOR SUBSTITUTION AND ECONOMIC-EFFICIENCY [J].
ARROW, KJ ;
CHENERY, HB ;
MINHAS, BS ;
SOLOW, RM .
REVIEW OF ECONOMICS AND STATISTICS, 1961, 43 (03) :225-250
[4]  
Chen B.-Y., TAMKANG J M IN PRESS
[5]  
Chen B.-Y., 2011, Pseudo-Riemannian geometry, -invariants and applications
[6]  
Chen BY, 2011, KRAGUJEV J MATH, V35, P343
[7]  
Cobb C., 1928, AM ECON REV, V18, P139, DOI DOI 10.2307/1811556
[8]  
Hicks J., 1932, The Theory of Wages
[9]  
Losonczi L., 2010, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, V26, P113
[10]   On some geometric properties of the generalized CES production functions [J].
Vilcu, Alina Daniela ;
Vilcu, Gabriel Eduard .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (01) :124-129