Accelerated design of Fe-based soft magnetic materials using machine learning and stochastic optimization

被引:88
作者
Wang, Yuhao [1 ]
Tian, Yefan [2 ]
Kirk, Tanner [1 ]
Laris, Omar [3 ]
Ross, Joseph H., Jr. [2 ,4 ]
Noebe, Ronald D. [5 ]
Keylin, Vladimir [5 ]
Arroyave, Raymundo [1 ,4 ]
机构
[1] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[5] NASA, Mat & Struct Div, Glenn Res Ctr, Cleveland, OH 44135 USA
基金
美国国家科学基金会;
关键词
machine learning; soft magnetic properties; nanocrystalline; materials design; HIGH SATURATION MAGNETIZATION; TRANSITION-METAL ALLOYS; NANOCRYSTALLINE ALLOYS; B ALLOYS; CRYSTALLIZATION PROCESS; TEMPERATURE-DEPENDENCE; FINEMET ALLOYS; CORE LOSS; ZR-B; MICROSTRUCTURE;
D O I
10.1016/j.actamat.2020.05.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning was utilized to efficiently boost the development of soft magnetic materials. The design process includes building a database composed of published experimental results, applying machine learning methods on the database, identifying the trends of magnetic properties in soft magnetic materials, and accelerating the design of next-generation soft magnetic nanocrystalline materials through the use of numerical optimization. Machine learning regression models were trained to predict magnetic saturation (B-s), coercivity (H-c) and magnetostriction (lambda), with a stochastic optimization framework being used to further optimize the corresponding magnetic properties. To verify the feasibility of the machine learning model, several optimized soft magnetic materials - specified in terms of compositions and thermomechanical treatments - have been predicted and then prepared and tested, showing good agreement between predictions and experiments, proving the reliability of the designed model. Two rounds of optimization-testing iterations were conducted to search for better properties. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:144 / 155
页数:12
相关论文
共 96 条
[31]   Can machine learning find extraordinary materials? [J].
Kauwe, Steven K. ;
Graser, Jake ;
Murdock, Ryan ;
Sparks, Taylor D. .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 174
[32]  
Ke G., 2017, Advances in Neural Information Processing Systems, P30, DOI DOI 10.5555/3294996.3295074
[33]   Structure and magnetic properties of nanocrystalline soft ferromagnets [J].
Kemény, T ;
Kaptás, D ;
Kiss, LF ;
Balogh, J ;
Vincze, I ;
Szabó, S ;
Beke, DL .
HYPERFINE INTERACTIONS, 2000, 130 (1-4) :181-219
[34]   MAGNETIC-PROPERTIES OF VERY HIGH PERMEABILITY, LOW COERCIVITY, AND HIGH ELECTRICAL-RESISTIVITY IN FE87ZR7B5AG1 AMORPHOUS ALLOY [J].
KIM, BG ;
SONG, JS ;
KIM, HS ;
OH, YW .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (10) :5298-5302
[35]   THE EXCHANGE-SPRING MAGNET - A NEW MATERIAL PRINCIPLE FOR PERMANENT-MAGNETS [J].
KNELLER, EF ;
HAWIG, R .
IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (04) :3588-3600
[36]  
Koehrsen W., 2018, FEATURE SELECTOR
[37]   High Bs Fe84-xSi4B8P4Cux(x=0-1.5) nanocrystalline alloys with excellent magnetic softness [J].
Kong, Fanli ;
Wang, Anding ;
Fan, Xingdu ;
Men, He ;
Shen, Baolong ;
Xie, Guoqiang ;
Makino, Akihiro ;
Inoue, Akihisa .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[38]   Mossbauer study of the magnetic properties of nanocrystalline Fe80.5Nb7B12.5 alloy [J].
Kopcewicz, M ;
Grabias, A ;
Skorvánek, I ;
Marcin, J ;
Idzikowski, B .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) :4427-4429
[39]   Optimization of soft magnetic properties in nanoperm type alloys [J].
Kwapulinski, P ;
Chrobak, A ;
Haneczok, G ;
Stoklosa, Z ;
Rasek, J ;
Lelatko, J .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2003, 23 (1-2) :71-75
[40]   Optimisation of soft magnetic properties in Fe-Cu-X-Si13B9 (X = Cr, Mo, Zr) amorphous alloys [J].
Kwapulinski, P ;
Rasek, J ;
Stoklosa, Z ;
Haneczok, G .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 234 (02) :218-226