Accelerated design of Fe-based soft magnetic materials using machine learning and stochastic optimization

被引:88
作者
Wang, Yuhao [1 ]
Tian, Yefan [2 ]
Kirk, Tanner [1 ]
Laris, Omar [3 ]
Ross, Joseph H., Jr. [2 ,4 ]
Noebe, Ronald D. [5 ]
Keylin, Vladimir [5 ]
Arroyave, Raymundo [1 ,4 ]
机构
[1] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[5] NASA, Mat & Struct Div, Glenn Res Ctr, Cleveland, OH 44135 USA
基金
美国国家科学基金会;
关键词
machine learning; soft magnetic properties; nanocrystalline; materials design; HIGH SATURATION MAGNETIZATION; TRANSITION-METAL ALLOYS; NANOCRYSTALLINE ALLOYS; B ALLOYS; CRYSTALLIZATION PROCESS; TEMPERATURE-DEPENDENCE; FINEMET ALLOYS; CORE LOSS; ZR-B; MICROSTRUCTURE;
D O I
10.1016/j.actamat.2020.05.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning was utilized to efficiently boost the development of soft magnetic materials. The design process includes building a database composed of published experimental results, applying machine learning methods on the database, identifying the trends of magnetic properties in soft magnetic materials, and accelerating the design of next-generation soft magnetic nanocrystalline materials through the use of numerical optimization. Machine learning regression models were trained to predict magnetic saturation (B-s), coercivity (H-c) and magnetostriction (lambda), with a stochastic optimization framework being used to further optimize the corresponding magnetic properties. To verify the feasibility of the machine learning model, several optimized soft magnetic materials - specified in terms of compositions and thermomechanical treatments - have been predicted and then prepared and tested, showing good agreement between predictions and experiments, proving the reliability of the designed model. Two rounds of optimization-testing iterations were conducted to search for better properties. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:144 / 155
页数:12
相关论文
共 96 条
[1]  
[Anonymous], 2020, MACHINE LEARNING APP
[2]   Multi-objective optimization in material design and selection [J].
Ashby, MF .
ACTA MATERIALIA, 2000, 48 (01) :359-369
[3]   Devitrification process of FeSiBCuBbX nanocrystalline alloys:: Mossbauer study of the intergranular phase [J].
Borrego, JM ;
Conde, CF ;
Conde, A ;
Peña-Rodríguez, VA ;
Greneche, JM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (37) :8089-8100
[4]   Structural relaxation processes in FeSiB-Cu(Nb, X), X = Mo, V, Zr, Nb glassy alloys [J].
Borrego, JM ;
Conde, CF ;
Conde, A .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 304 :491-494
[5]   Nanocrystallite compositions for Al- and Mo-containing Finemet-type alloys [J].
Borrego, JM ;
Conde, A ;
Todd, I ;
Frost, M ;
Davies, HA ;
Gibbs, MRJ ;
Garitaonandia, JS ;
Barandiarán, JM ;
Grenèche, JM .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2001, 287 (1-3) :125-129
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Effects of substitution of Mo for Nb on less-common properties of Finemet alloys [J].
Butvin, P. ;
Butvinova, B. ;
Silveyra, J. M. ;
Chromcikova, M. ;
Janickovic, D. ;
Sitek, J. ;
Svec, P. ;
Vlasak, G. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (20) :3035-3040
[8]  
Cao C.C., 2018, SCI REP-UK, V8, P1
[9]   The effect of Zn, Ag and Au substitution for Cu in Finemet on the crystallization and magnetic properties [J].
Chau, N. ;
Hoa, N. Q. ;
The, N. D. ;
Vu, L. V. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 303 (02) :E415-E418
[10]   Influence of P substitution for B on the structure and properties of nanocrystalline Fe73.5Si15.5Nb3Cu1B7-xPx alloys [J].
Chau, N ;
Luong, NH ;
Chien, NX ;
Thanh, PQ ;
Vu, LV .
PHYSICA B-CONDENSED MATTER, 2003, 327 (2-4) :241-243