Computer vision measurement and optimization of surface roughness using soft computing approaches

被引:16
|
作者
Beemaraj, Radha Krishnan [1 ]
Sekar, Mathalai Sundaram Chandra [2 ]
Vijayan, Venkatraman [3 ]
机构
[1] Nadar Saraswathi Coll Engn & Technol, Mech Engn, Theni 625531, Tamil Nadu, India
[2] Nadar Saraswathi Coll Engn & Technol, Vadaveeranaickenpatty, India
[3] K Ramakrishnan Coll Technol, Mech Engn, Samayapuram, India
关键词
Surface roughness; soft computing; feature extraction; statistical features; PREDICTION; SYSTEM;
D O I
10.1177/0142331220916056
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an efficient methodology for predicting surface roughness using different soft computing approaches. The soft computing approaches are artificial neural network, adaptive neuro-fuzzy inference system and genetic algorithm. The proposed surface roughness prediction procedure has the following stages as feature extraction from the materials, classifications using random forests, adaptive neuro-fuzzy inference system (ANFIS). In this paper, the statistical features are extracted from material images as skewness, kurtosis, mean, variance, contrast, and energy.The surface roughness accuracy value varied between ANFIS and random forest classification in every measurement sequence. This limitation can be overcome by the genetic algorithm to optimize the best results. The optimization technique can produce more accurate surface roughness results for more than 98% and reduce the error rate up to 0.5%.
引用
收藏
页码:2475 / 2481
页数:7
相关论文
共 50 条
  • [31] Determination of optimum amount lubricant in drilling using soft-computing tools: Desired surface roughness
    Nandi A.K.
    Davim J.P.
    International Journal of Materials and Product Technology, 2010, 37 (1-2) : 102 - 116
  • [32] Modelling of tool life and surface roughness in hard turning using soft computing techniques: a comparative study
    Cica, D.
    Sredanovic, B.
    Kramar, D.
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2015, 50 (01) : 49 - 64
  • [33] Estimation of soil dispersivity using soft computing approaches
    Emamgholizadeh, Samad
    Bahman, Kiana
    Bateni, S. Mohyeddin
    Ghorbani, Hadi
    Marofpoor, Isa
    Nielson, Jeffrey R.
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S207 - S216
  • [34] Effect of surface lay in the surface roughness evaluation using machine vision
    Nammi, Srinagalakshmi
    Ramamoorthy, B.
    OPTIK, 2014, 125 (15): : 3954 - 3960
  • [35] An Evolvable Hardware Chip for Illumination Enhancement in Computer Vision for Surface Roughness Estimation
    Narayanan, M. Rajaram
    Gowri, S.
    Velayutham, A.
    Ravi, S.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2006, 6 (2A): : 59 - 64
  • [36] Noncontact roughness measurement of turned parts using machine vision
    Shahabi, H. H.
    Ratnam, M. M.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2010, 46 (1-4) : 275 - 284
  • [37] Assessment of liquefaction-induced lateral spread using soft computing approaches
    Chen, Zhixiong
    Chen, Yuhui
    Zhang, Yanmei
    Liu, Xingguo
    Xiao, Peng
    Samui, Pijush
    GONDWANA RESEARCH, 2023, 123 : 265 - 279
  • [38] Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM
    Rao, K. Venkata
    Murthy, P. B. G. S. N.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (07) : 1533 - 1543
  • [39] Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition
    Campomanes-Alvarez, B. Rosario
    Ibanez, O.
    Navarro, F.
    Aleman, I.
    Botella, M.
    Damas, S.
    Cordon, O.
    FORENSIC SCIENCE INTERNATIONAL, 2014, 245 : 77 - 86
  • [40] A vision system for surface roughness assessment using neural networks
    Du-Ming Tsai
    Jeng-Jong Chen
    Jeng-Fung Chen
    The International Journal of Advanced Manufacturing Technology, 1998, 14 : 412 - 422