Groups generated by a finite Engel set

被引:3
|
作者
Abdollahi, Alireza [2 ,3 ]
Brandl, Rolf [4 ]
Tortora, Antonio [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat, I-84084 Fisciano, SA, Italy
[2] Univ Isfahan, Dept Math, Esfahan 8174673441, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[4] Math Inst, D-97074 Wurzburg, Germany
关键词
Engel set; Nilpotent group; NILPOTENT;
D O I
10.1016/j.jalgebra.2011.09.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subset S of a group G is called an Engel set if, for all x, y is an element of S. there is a non-negative integer n = n(x, y) such that [x, (n)y] = 1. In this paper we are interested in finding conditions for a group generated by a finite Engel set to be nilpotent. In particular, we focus our investigation on groups generated by an Engel set of size two. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 59
页数:7
相关论文
共 50 条
  • [41] Shadowing for actions of some finitely generated groups
    Osipov, Alexey V.
    Tikhomirov, Sergey B.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (03): : 337 - 351
  • [42] On Levi quasivarieties generated bn nilpotent groups
    Budkin, AI
    Taranina, LV
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (02) : 218 - 223
  • [43] A Levi Class Generated by a Quasivariety of Nilpotent Groups
    Lodeishchikova, V. V.
    ALGEBRA AND LOGIC, 2019, 58 (04) : 327 - 336
  • [44] A Levi Class Generated by a Quasivariety of Nilpotent Groups
    V. V. Lodeishchikova
    Algebra and Logic, 2019, 58 : 327 - 336
  • [45] On Groups of Automorphisms of Nilpotent p-Groups of Finite Rank
    Tao Xu
    Heguo Liu
    Czechoslovak Mathematical Journal, 2020, 70 : 1161 - 1165
  • [46] On Groups of Automorphisms of Nilpotent p-Groups of Finite Rank
    Xu, Tao
    Liu, Heguo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (04) : 1161 - 1165
  • [47] On p-nilpotency of finite groups*
    Long Miao
    Bulletin of the Brazilian Mathematical Society, New Series, 2007, 38 : 585 - 594
  • [48] Involutory automorphisms of finite groups and their centralizers
    Pavel Shumyatsky
    Archiv der Mathematik, 1998, 71 : 425 - 432
  • [49] ON THE CRITICAL NUMBER OF FINITE GROUPS (II)
    Wang, Qinghong
    Qu, Yongke
    ARS COMBINATORIA, 2014, 113A : 321 - 330
  • [50] A note on the σ-covers of finite soluble groups
    Jamali, A
    Mousavi, H
    ALGEBRA COLLOQUIUM, 2005, 12 (04) : 691 - 697