SUBORDINATION FOR THE SUM OF TWO RANDOM MATRICES

被引:22
作者
Kargin, V. [1 ]
机构
[1] Ctr Math Sci, Stat Lab, Cambridge CB3 0WB, England
关键词
Random matrices; subordination; small-rank matrix deformations; delocalization; local limit law; FINITE RANK DEFORMATIONS; LARGEST EIGENVALUE; FREE CONVOLUTION; WIGNER MATRICES; PERTURBATIONS; EIGENVECTORS; LAW;
D O I
10.1214/14-AOP929
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is about the relation of random matrix theory and the subordination phenomenon in complex analysis. We find that the resolvent of the sum of two random matrices is approximately subordinated to the resolvents of the original matrices. We estimate the error terms in this relation and in the subordination relation for the traces of the resolvents. This allows us to prove a local limit law for eigenvalues and a delocalization result for eigenvectors of the sum of two random matrices. In addition, we use subordination to determine the limit of the largest eigenvalue for the rank-one deformations of unitary-invariant random matrices.
引用
收藏
页码:2119 / 2150
页数:32
相关论文
共 50 条
[31]   ON CONNECTIONS BETWEEN THE THEORY OF RANDOM OPERATORS AND THE THEORY OF RANDOM MATRICES [J].
Pastur, L. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2012, 23 (01) :117-137
[32]   RANDOM MATRICES: SHARP CONCENTRATION OF EIGENVALUES [J].
Tao, Terence ;
Vu, Van .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2013, 2 (03)
[33]   RANDOM MATRICES: UNIVERSAL PROPERTIES OF EIGENVECTORS [J].
Tao, Terence ;
Van Vu .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
[34]   LONG RANDOM MATRICES AND TENSOR UNFOLDING [J].
Ben Arous, Gerard ;
Huang, Daniel Zhengyu ;
Huang, Jiaoyang .
ANNALS OF APPLIED PROBABILITY, 2023, 33 (6B) :5753-5780
[35]   Rectangular random matrices, related convolution [J].
Florent Benaych-Georges .
Probability Theory and Related Fields, 2009, 144 :471-515
[36]   On the large deviations of traces of random matrices [J].
Augeri, Fanny .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (04) :2239-2285
[37]   Rectangular random matrices, related convolution [J].
Benaych-Georges, Florent .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (3-4) :471-515
[38]   Complex Outliers of Hermitian Random Matrices [J].
Rochet, Jean .
JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (04) :1624-1654
[39]   The singular values and vectors of low rank perturbations of large rectangular random matrices [J].
Benaych-Georges, Florent ;
Nadakuditi, Raj Rao .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 111 :120-135
[40]   On the singularity of adjacency matrices for random regular digraphs [J].
Cook, Nicholas A. .
PROBABILITY THEORY AND RELATED FIELDS, 2017, 167 (1-2) :143-200