A small granular controlled leakage reduction system for SRAMs

被引:8
作者
Geens, P [1 ]
Dehaene, W [1 ]
机构
[1] Katholieke Univ Leuven, ESAT, MICAS, B-3001 Heverlee, Belgium
关键词
leakage reduction; SRAM; small granular control; dynamic voltage control;
D O I
10.1016/j.sse.2005.10.020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In current and future technologies, the leakage of the transistors is a major contributor to the total power dissipation. That effect is even reinforced in SRAM circuits because the matrix contains a high proportion of cells that are not accessed for extended periods of time. This paper presents a memory that by use of small granular control of the supply voltages can succeed in gaining at least a factor 10 in total power reduction. Using a distributed last stage of the SRAM decoder the stand-by and active cycle of the SRAM matrix can be controlled per word. This allows to selectively wake-Lip only the needed word and peripheral circuitry. When combined with monitoring and DC-DC conversion circuitry for the stand-by voltage, a closed loop system is attained that can minimise power consumption in the SRAM matrix. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1776 / 1782
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 2001, DESIGN HIGH PERFORMA
[2]   Standby power reduction using dynamic voltage scaling and canary flip-flop structures [J].
Calhoun, BH ;
Chandrakasan, AP .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (09) :1504-1511
[3]  
Drazdziulis M, 2004, ESSCIRC 2004: PROCEEDINGS OF THE 30TH EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, P171
[4]   A super cut-off CMOS (SCCMOS) scheme for 0.5-V supply voltage with picoampere stand-by current [J].
Kawaguchi, H ;
Nose, K ;
Sakurai, T .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000, 35 (10) :1498-1501
[5]   Circuit and microarchitectural techniques for reducing cache leakage power [J].
Kim, NS ;
Flautner, K ;
Blaauw, D ;
Mudge, T .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2004, 12 (02) :167-184
[6]   Ultralow-power SRAM technology [J].
Mann, RW ;
Abadeer, WW ;
Breitwisch, MJ ;
Bula, O ;
Brown, JS ;
Colwill, BC ;
Cottrell, PE ;
Crocco, WG ;
Furkay, SS ;
Hauser, MJ ;
Hook, TB ;
Hoyniak, D ;
Johnson, JM ;
Lam, CH ;
Mih, RD ;
Rivard, J ;
Moriwaki, A ;
Phipps, E ;
Putnam, CS ;
Rainey, BA ;
Toomey, JJ ;
Younus, MI .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2003, 47 (5-6) :553-566
[7]   1-V POWER-SUPPLY HIGH-SPEED DIGITAL CIRCUIT TECHNOLOGY WITH MULTITHRESHOLD-VOLTAGE CMOS [J].
MUTOH, S ;
DOUSEKI, T ;
MATSUYA, Y ;
AOKI, T ;
SHIGEMATSU, S ;
YAMADA, J .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1995, 30 (08) :847-854
[8]   A 90-nm low-power 32-kB embedded SRAM with gate leakage suppression circuit for mobile applications [J].
Nii, K ;
Tsukamoto, Y ;
Yoshizawa, T ;
Imaoka, S ;
Yamagami, Y ;
Suzuki, T ;
Shibayama, A ;
Makino, H ;
Iwade, S .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (04) :684-693
[9]   Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits [J].
Roy, K ;
Mukhopadhyay, S ;
Mahmoodi-Meimand, H .
PROCEEDINGS OF THE IEEE, 2003, 91 (02) :305-327
[10]  
Saliba FR, 2005, 2005 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, P162