Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites

被引:62
作者
Garcia-Pichel, Ferran [1 ]
Al-Horani, Fuad A. [3 ]
Farmer, Jack D. [2 ]
Ludwig, Rebecca [3 ]
Wade, Brian D. [1 ]
机构
[1] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Geol Sci, Tempe, AZ 85287 USA
[3] Max Planck Inst Marine Microbiol, Bremen, Germany
关键词
D O I
10.1111/j.1472-4669.2004.00017.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stromatolites date back some 3.5 billion years and constitute the most common and conspicuous fossils through the Proterozoic. These organosedimentary structures decreased dramatically in diversity and abundance by the late Neoproterozoic, a phenomenon often ascribed to destructive grazing by newly evolved metazoans. We investigated the concurrent processes of microbial calcification and metazoan bioerosion in one of the few locations (Rio Mesquites, Cuatro Cienegas, Coahuila, Mexico) where living freshwater stromatolites, formed by cyanobacteria and diatoms, coexist with significant populations of metazoan grazers. We used microsensor chemical profiling and monitoring of bulk water Ca(2+) concentrations to determine calcification rates and their dependence on microbial metabolism. The bioerosive impact resulting from grazing by endemic hydrobiid gastropods was assessed by gravimetric quantification of carbonaceous faecal pellet production. Calcification was clearly light-dependent, reaching maximal rates (saturation) at low incident light intensity, and was surprisingly efficient, with O(2)/Ca(2+) exchange ratios well above unity, and with absolute rates similar to those found in corals. However, the erosive action of grazing snails removed most of these carbonate inputs from the oncolites. Thus, a precarious balance between constructive and destructive geobiological processes was at play in the system. The fact that accretion barely exceeded bioerosion in an environment highly conducive to calcification supports the potential impact of faunal grazing as causal agent in the demise of stromatolites in the late Proterozoic. Our findings indicate that a search for fossil evidence of bioerosive grazing in the form of carbonaceous faecal pellets associated with fossil stromatolites may provide a means to test that hypothesis directly.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 47 条
  • [1] INTRACELLULAR NEUTRAL CARRIER-BASED CA-2+ MICROELECTRODE WITH SUBNANOMOLAR DETECTION LIMIT
    AMMANN, D
    BUHRER, T
    SCHEFER, U
    MULLER, M
    SIMON, W
    [J]. PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1987, 409 (03): : 223 - 228
  • [2] PRECAMBRIAN COLUMNAR STROMATOLITE DIVERSITY - REFLECTION OF METAZOANAPPEARANCE
    AWRAMIK, SM
    [J]. SCIENCE, 1971, 174 (4011) : 825 - &
  • [3] BURNE RV, 1981, PALAIOS, V2, P13
  • [4] A microsensor study of light enhanced Ca2+ uptake and photosynthesis in the reef-building hermatypic coral Favia sp.
    de Beer, D
    Kühl, M
    Stambler, N
    Vaki, L
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2000, 194 : 75 - 85
  • [5] A nitrite microsensor for profiling environmental biofilms
    deBeer, D
    Schramm, A
    Santegoeds, CM
    Kuhl, M
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (03) : 973 - 977
  • [6] EPPING EHG, 1996, MARINE ECOLOGICAL PR, V139, P103
  • [7] Farmer J.D., 1992, P295
  • [9] MICROBIAL TRACE-FOSSIL FORMATION, BIOGENOUS, AND ABIOTIC WEATHERING IN THE ANTARCTIC COLD DESERT
    FRIEDMANN, EI
    WEED, R
    [J]. SCIENCE, 1987, 236 (4802) : 703 - 705
  • [10] Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats
    Garcia-Pichel, F
    Kühl, M
    Nübel, U
    Muyzer, G
    [J]. JOURNAL OF PHYCOLOGY, 1999, 35 (02) : 227 - 238