Big Data-Led Cancer Research, Application, and Insights

被引:6
|
作者
Brown, James A. L. [1 ]
Chonghaile, Triona Ni [2 ]
Matchett, Kyle B. [3 ]
Lynam-Lennon, Niamh [4 ]
Kiely, Patrick A. [5 ]
机构
[1] Natl Univ Ireland Galway, Lambe Inst Translat Res, Sch Med, Discipline Surg, Galway, Ireland
[2] Royal Coll Surgeons Ireland, Physiol & Med Phys Dept, Dublin, Ireland
[3] Queens Univ Belfast, Ctr Canc Res & Cell Biol, Belfast, Antrim, North Ireland
[4] Trinity Coll Dublin, Trinity Translat Med Inst, Dept Surg, Dublin, Ireland
[5] Univ Limerick, Grad Entry Med Sch, Limerick, Ireland
关键词
MICROBIOME; INTERFACE; DISCOVERY; TUMORS; OMICS; CELLS;
D O I
10.1158/0008-5472.CAN-16-0860
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Insights distilled from integratingmultiple big-data or "omic" datasets have revealed functional hierarchies of molecular networks driving tumorigenesis and modifiers of treatment response. Identifying these novel key regulatory and dysregulated elements is now informing personalized medicine. Crucially, although there are many advantages to this approach, there are several key considerations to address. Here, we examine how this big data-led approach is impacting many diverse areas of cancer research, through review of the key presentations given at the Irish Association for Cancer Research Meeting and importantly how the results may be applied to positively affect patient outcomes.
引用
收藏
页码:6167 / 6170
页数:4
相关论文
共 50 条
  • [11] Transforming Big Data into AI-ready data for nutrition and obesity research
    Thomas, Diana M.
    Knight, Rob
    Gilbert, Jack A.
    Cornelis, Marilyn C.
    Gantz, Marie G.
    Burdekin, Kate
    Cummiskey, Kevin
    Sumner, Susan C. J.
    Pathmasiri, Wimal
    Sazonov, Edward
    Gabriel, Kelley Pettee
    Dooley, Erin E.
    Green, Mark A.
    Pfluger, Andrew
    Kleinberg, Samantha
    OBESITY, 2024, 32 (05) : 857 - 870
  • [12] The application of big data to cardiovascular disease: paths to precision medicine
    Leopold, Jane A.
    Maron, Bradley A.
    Loscalzo, Joseph
    JOURNAL OF CLINICAL INVESTIGATION, 2020, 130 (01) : 29 - 38
  • [13] Promise and pitfalls in the application of big data to occupational and environmental health
    Stieb, David M.
    Boot, Cecile R.
    Turner, Michelle C.
    BMC PUBLIC HEALTH, 2017, 17
  • [14] Big data-driven water research towards metaverse
    Uchimiya, Minori
    WATER SCIENCE AND ENGINEERING, 2024, 17 (02) : 101 - 107
  • [15] Novel network services for supporting big data science research
    Chung, Joaquin
    Donovan, Sean
    Bezerra, Jeronimo
    Morgan, Heidi
    Ibarra, Julio
    Clark, Russ
    Owen, Henry
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 98 : 512 - 521
  • [16] Strategies for Functional Interrogation of Big Cancer Data Using Drosophila Cancer Models
    Bangi, Erdem
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (11)
  • [17] D-TSVR Recurrence Prediction Driven by Medical Big Data in Cancer
    Yang, Ai-Min
    Han, Yang
    Liu, Chen-Shuai
    Wu, Jian-Hui
    Hua, Dian-Bo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) : 3508 - 3517
  • [18] Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data Analytics
    Suwinski, Pawel
    Ong, ChuangKee
    Ling, Maurice H. T.
    Poh, Yang Ming
    Khan, Asif M.
    Ong, Hui San
    FRONTIERS IN GENETICS, 2019, 10
  • [19] Primary liver cancer organoids and their application to research and therapy
    Zhu, Xiaobin
    Trehan, Rajiv
    Xie, Changqing
    JOURNAL OF THE NATIONAL CANCER CENTER, 2024, 4 (03): : 195 - 202
  • [20] Application of Mass Spectrometry in Pancreatic Cancer Translational Research
    Ge, Peng
    Luo, Yalan
    Chen, Haiyang
    Liu, Jiayue
    Guo, Haoya
    Xu, Caiming
    Qu, Jialin
    Zhang, Guixin
    Chen, Hailong
    FRONTIERS IN ONCOLOGY, 2021, 11