Cellular Traction Stresses Increase with Increasing Metastatic Potential

被引:309
作者
Kraning-Rush, Casey M. [1 ]
Califano, Joseph P. [1 ]
Reinhart-King, Cynthia A. [1 ]
机构
[1] Cornell Univ, Dept Biomed Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
BREAST-CANCER; TUMOR-CELL; MATRIX STIFFNESS; SUBSTRATE STIFFNESS; EPITHELIAL-CELLS; INVASION; MIGRATION; ADHESION; CONTACT; PROGRAM;
D O I
10.1371/journal.pone.0032572
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer cells exist in a mechanically and chemically heterogeneous microenvironment which undergoes dynamic changes throughout neoplastic progression. During metastasis, cells from a primary tumor acquire characteristics that enable them to escape from the primary tumor and migrate through the heterogeneous stromal environment to establish secondary tumors. Despite being linked to poor prognosis, there are no direct clinical tests available to diagnose the likelihood of metastasis. Moreover, the physical mechanisms employed by metastatic cancer cells to migrate are poorly understood. Because metastasis of most solid tumors requires cells to exert force to reorganize and navigate through dense stroma, we investigated differences in cellular force generation between metastatic and non-metastatic cells. Using traction force microscopy, we found that in human metastatic breast, prostate and lung cancer cell lines, traction stresses were significantly increased compared to non-metastatic counterparts. This trend was recapitulated in the isogenic MCF10AT series of breast cancer cells. Our data also indicate that increased matrix stiffness and collagen density promote increased traction forces, and that metastatic cells generate higher forces than non-metastatic cells across all matrix properties studied. Additionally, we found that cell spreading for these cell lines has a direct relationship with collagen density, but a biphasic relationship with substrate stiffness, indicating that cell area alone does not dictate the magnitude of traction stress generation. Together, these data suggest that cellular contractile force may play an important role in metastasis, and that the physical properties of the stromal environment may regulate cellular force generation. These findings are critical for understanding the physical mechanisms of metastasis and the role of the extracellular microenvironment in metastatic progression.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Cancer Cell Stiffness: Integrated Roles of Three-Dimensional Matrix Stiffness and Transforming Potential [J].
Baker, Erin L. ;
Lu, Jing ;
Yu, Dihua ;
Bonnecaze, Roger T. ;
Zaman, Muhammad H. .
BIOPHYSICAL JOURNAL, 2010, 99 (07) :2048-2057
[2]   Extracellular Matrix Stiffness and Architecture Govern Intracellular Rheology in Cancer [J].
Baker, Erin L. ;
Bonnecaze, Roger T. ;
Zamao, Muhammad H. .
BIOPHYSICAL JOURNAL, 2009, 97 (04) :1013-1021
[3]   Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking [J].
Bloom, Ryan J. ;
George, Jerry P. ;
Celedon, Alfredo ;
Sun, Sean X. ;
Wirtz, Denis .
BIOPHYSICAL JOURNAL, 2008, 95 (08) :4077-4088
[4]   Substrate Stiffness and Cell Area Predict Cellular Traction Stresses in Single Cells and Cells in Contact [J].
Califano, Joseph P. ;
Reinhart-King, Cynthia A. .
CELLULAR AND MOLECULAR BIOENGINEERING, 2010, 3 (01) :68-75
[5]   New signals from the invasive front [J].
Christofori, G .
NATURE, 2006, 441 (7092) :444-450
[6]   Nanomechanical analysis of cells from cancer patients [J].
Cross, Sarah E. ;
Jin, Yu-Sheng ;
Rao, Jianyu ;
Gimzewski, James K. .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :780-783
[7]   A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: Do cell properties reflect metastatic potential? [J].
Darling, Eric M. ;
Zauscher, Stefan ;
Block, Joel A. ;
Guilak, Farshid .
BIOPHYSICAL JOURNAL, 2007, 92 (05) :1784-1791
[8]   Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures [J].
Debnath, J ;
Muthuswamy, SK ;
Brugge, JS .
METHODS, 2003, 30 (03) :256-268
[9]   Stresses at the cell-to-substrate interface during locomotion of fibroblasts [J].
Dembo, M ;
Wang, YL .
BIOPHYSICAL JOURNAL, 1999, 76 (04) :2307-2316
[10]   Off by a whisker [J].
Dennis, Carina .
NATURE, 2006, 442 (7104) :739-741