Neurodynamic programming and zero-sum games for constrained control systems

被引:161
作者
Abu-Khalaf, Murad [1 ]
Lewis, Frank L. [2 ]
Huang, Jie [3 ]
机构
[1] MathWorks Inc, Control & Estimat Grp, Natick, MA 01760 USA
[2] Univ Texas Arlington, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
[3] Chinese Univ Hong Kong, Dept Automat & Comp Aided Engn, Shatin, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2008年 / 19卷 / 07期
基金
美国国家科学基金会;
关键词
actuator saturation; H(infinity) control; policy iterations; zero-sum games;
D O I
10.1109/TNN.2008.2000204
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L(2)-gain optimal control, suboptimal H(infinity) control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L(2)-gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.
引用
收藏
页码:1243 / 1252
页数:10
相关论文
共 44 条
[1]   Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach [J].
Abu-Khalaf, M ;
Lewis, FL .
AUTOMATICA, 2005, 41 (05) :779-791
[2]   Policy iterations on the Hamilton-Jacobi-Isaacs equation for H∞ state feedback control with input saturation [J].
Abu-Khalaf, Murad ;
Lewis, Frank L. ;
Huang, Jie .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (12) :1989-1995
[3]  
[Anonymous], 2000, ADAPTIVE CONTROL REC, DOI DOI 10.1007/978-1-4471-0785-9
[4]  
[Anonymous], 2003, PURE APPL MAT AMST
[5]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[6]  
Apostol T.M., 1974, MATH ANAL
[7]  
Basar T., 1995, H INFINITE OPTIMAL C
[8]  
BEARD R, 1996, AUTOMATICA, V33, P2159
[9]   Successive Galerkin approximation algorithms for nonlinear optimal and robust control [J].
Beard, RW ;
McLain, TW .
INTERNATIONAL JOURNAL OF CONTROL, 1998, 71 (05) :717-743
[10]  
BERTSEKAS D, 1996, NEURODYNAMIC PROGR