Neurodynamic programming and zero-sum games for constrained control systems

被引:157
作者
Abu-Khalaf, Murad [1 ]
Lewis, Frank L. [2 ]
Huang, Jie [3 ]
机构
[1] MathWorks Inc, Control & Estimat Grp, Natick, MA 01760 USA
[2] Univ Texas Arlington, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
[3] Chinese Univ Hong Kong, Dept Automat & Comp Aided Engn, Shatin, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2008年 / 19卷 / 07期
基金
美国国家科学基金会;
关键词
actuator saturation; H(infinity) control; policy iterations; zero-sum games;
D O I
10.1109/TNN.2008.2000204
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, neural networks are used along with two-player policy iterations to solve for the feedback strategies of a continuous-time zero-sum game that appears in L(2)-gain optimal control, suboptimal H(infinity) control, of nonlinear systems affine in input with the control policy having saturation constraints. The result is a closed-form representation, on a prescribed compact set chosen a priori, of the feedback strategies and the value function that solves the associated Hamilton-Jacobi-Isaacs (HJI) equation. The closed-loop stability, L(2)-gain disturbance attenuation of the neural network saturated control feedback strategy, and uniform convergence results are proven. Finally, this approach is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem under actuator saturation, offering guaranteed stability and disturbance attenuation.
引用
收藏
页码:1243 / 1252
页数:10
相关论文
共 44 条