High-dimensional neutrino masses

被引:32
|
作者
Anamiati, Gaetana [1 ]
Castillo-Felisola, Oscar [2 ,3 ]
Fonseca, Renato M. [4 ]
Helo, J. C. [3 ,5 ]
Hirsch, M. [1 ]
机构
[1] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain
[2] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile
[3] Ctr Cient Tecnol Valparaiso, Casilla 110-V, Valparaiso, Chile
[4] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, V Holesovickach 2, CR-18000 Prague 8, Czech Republic
[5] Univ La Serena, Fac Ciencias, Dept Fis, Ave Cisternas 1200, La Serena, Chile
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 12期
关键词
Beyond Standard Model; Neutrino Physics; SEESAW MECHANISM; MODELS; OSCILLATIONS; MIXINGS; SPHENO; SCALE; TOOL;
D O I
10.1007/JHEP12(2018)066
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
For Majorana neutrino masses the lowest dimensional operator possible is the Weinberg operator at d = 5. Here we discuss the possibility that neutrino masses originate from higher dimensional operators. Specifically, we consider all tree-level decompositions of the d = 9, d = 11 and d = 13 neutrino mass operators. With renormalizable interactions only, we find 18 topologies and 66 diagrams for d = 9, and 92 topologies plus 504 diagrams at the d = 11 level. At d = 13 there are already 576 topologies and 4199 diagrams. However, among all these there are only very few genuine neutrino mass models: At d = (9, 11, 13) we find only (2,2,2) genuine diagrams and a total of (2,2,6) models. Here, a model is considered genuine at level d if it automatically forbids lower order neutrino masses without the use of additional symmetries. We also briefly discuss how neutrino masses and angles can be easily fitted in these high-dimensional models.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] A method for high-dimensional smoothing
    Yaxian Xu
    Ajay Jasra
    Journal of the Korean Statistical Society, 2019, 48 : 50 - 67
  • [42] High-dimensional data clustering
    Bouveyron, C.
    Girard, S.
    Schmid, C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 502 - 519
  • [43] A high-dimensional Wilks phenomenon
    Boucheron, Stephane
    Massart, Pascal
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (3-4) : 405 - 433
  • [44] Mixing in High-Dimensional Expanders
    Parzanchevski, Ori
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (05): : 746 - 761
  • [45] On High-Dimensional Acyclic Tournaments
    Nati Linial
    Avraham Morgenstern
    Discrete & Computational Geometry, 2013, 50 : 1085 - 1100
  • [47] ON HIGH-DIMENSIONAL WAVELET EIGENANALYSIS
    Abry, Patrice
    Boniece, B. cooper
    Didier, Gustavo
    Wendt, Herwig
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (06): : 5287 - 5350
  • [48] Introduction to High-dimensional Statistics
    Young, G. Alastair
    INTERNATIONAL STATISTICAL REVIEW, 2015, 83 (03) : 515 - 516
  • [49] High-dimensional lattice gases
    Heringa, JR
    Blöte, HWJ
    Luijten, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (15): : 2929 - 2941
  • [50] Introduction to high-dimensional statistics
    Chen, Li-Pang
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 : S767 - S767