CAM-Convs: Camera-Aware Multi-Scale Convolutions for Single-View Depth

被引:91
作者
Facil, Jose M. [1 ]
Ummenhofer, Benjamin [2 ,3 ]
Zhou, Huizhong [2 ]
Montesano, Luis [1 ,4 ]
Brox, Thomas [2 ]
Civera, Javier [1 ]
机构
[1] Univ Zaragoza, Zaragoza, Spain
[2] Univ Freiburg, Freiburg, Germany
[3] Intel Labs, Hillsboro, OR USA
[4] Bitbrain, Zaragoza, Spain
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
欧盟地平线“2020”;
关键词
D O I
10.1109/CVPR.2019.01210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-view depth estimation suffers from the problem that a network trained on images from one camera does not generalize to images taken with a different camera model. Thus, changing the camera model requires collecting an entirely new training dataset. In this work, we propose a new type of convolution that can take the camera parameters into account, thus allowing neural networks to learn calibration-aware patterns. Experiments confirm that this improves the generalization capabilities of depth prediction networks considerably, and clearly outperforms the state of the art when the train and test images are acquired with different cameras.
引用
收藏
页码:11818 / 11827
页数:10
相关论文
共 49 条
[1]  
[Anonymous], 2018, P IEEE C COMP VIS PA
[2]  
[Anonymous], 2018, ARXIV180703247
[3]  
[Anonymous], 2017, P INT C COMP VIS ICC
[4]  
[Anonymous], PROC CVPR IEEE
[5]  
[Anonymous], ARXIV180504239
[6]  
[Anonymous], ARXIV180703959
[7]  
[Anonymous], 2018, COMPUTER VISION PATT
[8]  
[Anonymous], 2017, P COMP VIS PATT REC
[9]  
[Anonymous], 2017, IEEE CVPR 2017
[10]  
[Anonymous], 2017, P IEEE C COMP VIS PA