Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior

被引:106
作者
Dong, Xiaoli [1 ,2 ]
Yang, Yang [1 ,2 ]
Wang, Bingliang [1 ,2 ]
Cao, Yongjie [1 ,2 ]
Wang, Nan [1 ,2 ]
Li, Panlong [1 ,2 ]
Wang, Yonggang [1 ,2 ]
Xia, Yongyao [1 ,2 ]
机构
[1] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
high diffusion coefficient; intercalation pseudocapacitance; rechargeable batteries; synergistic effects; ultralow temperature; CATHODE MATERIAL; ION CELLS; LOW-COST; PERFORMANCE; ELECTROLYTES; DIFFUSION;
D O I
10.1002/advs.202000196
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conventional intercalation compounds for lithium-ion batteries (LIBs) suffer from rapid capacity fading and are even unable to charge-discharge with temperature decline, owing to the sluggish kinetics and solvation/desolvation process. In this work, a high-performance rechargeable battery at ultralow temperature is developed by employing a nanosized Ni-based Prussian blue (NiHCF) cathode. The battery delivers a high capacity retention of 89% (low temperature of -50 degrees C) and 82% (ultralow temperature of -70 degrees C) compared with that at +25 degrees C. Various characterizations and electrochemical investigations, including operando Fourier transform infrared spectra, in situ X-ray diffraction, cyclic voltammetry response, and galvanostatic intermittent titration technique are carried out to detect the structural stability and electrochemical behavior at different temperatures. It turns out that the pseudocapacitive behavior drives the desolvation process at the interface, while fast diffusion in the bulk electrode accelerates the movement of Li+ from the interface to the bulk materials. The unique synergistic features of intercalation pseudocapacitance at the electrolyte/electrode interface and high diffusion coefficient in the bulk electrode enables the NiHCF cathode with excellent low temperature performance. These findings offer a new direction for the design of LIBs operated at low temperature.
引用
收藏
页数:8
相关论文
共 33 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]   Achieving high energy density and high power density with pseudocapacitive materials [J].
Choi, Christopher ;
Ashby, David S. ;
Butts, Danielle M. ;
DeBlock, Ryan H. ;
Wei, Qiulong ;
Lau, Jonathan ;
Dunn, Bruce .
NATURE REVIEWS MATERIALS, 2020, 5 (01) :5-19
[3]   High-Energy Rechargeable Metallic Lithium Battery at-70°C Enabled by a Cosolvent Electrolyte [J].
Dong, Xiaoli ;
Lin, Yuxiao ;
Li, Panlong ;
Ma, Yuanyuan ;
Huang, Jianhang ;
Bin, Duan ;
Wang, Yonggang ;
Qi, Yue ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (17) :5623-5627
[4]   Organic Batteries Operated at -70°C [J].
Dong, Xiaoli ;
Guo, Zhaowei ;
Guo, Ziyang ;
Wang, Yonggang ;
Xia, Yongyao .
JOULE, 2018, 2 (05) :902-913
[5]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890
[6]   Building aqueous K-ion batteries for energy storage [J].
Jiang, Liwei ;
Lu, Yaxiang ;
Zhao, Chenglong ;
Liu, Lilu ;
Zhang, Jienan ;
Zhang, Qiangqiang ;
Shen, Xing ;
Zhao, Junmei ;
Yu, Xiqian ;
Li, Hong ;
Huang, Xuejie ;
Chen, Liquan ;
Hu, Yong-Sheng .
NATURE ENERGY, 2019, 4 (06) :495-503
[7]   Hollow Structured LiFePO4/C Microspheres in situ Prepared by a One-Pot Template-Free Method as Cathode for LithiumIon Batteries [J].
Jin, Yuan ;
Wang, Haiyan ;
Tang, Xincun .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (12) :11405-11417
[8]   Lithium diffusion coefficient in LiMn2O4 thin films measured by secondary ion mass spectrometry with ion-exchange method [J].
Kuwata, Naoaki ;
Nakane, Masakatsu ;
Miyazaki, Takamichi ;
Mitsuishi, Kazutaka ;
Kawamura, Junichi .
SOLID STATE IONICS, 2018, 320 :266-271
[9]   Wide-Temperature Electrolytes for Lithium-Ion Batteries [J].
Li, Qiuyan ;
Jiao, Shuhong ;
Luo, Langli ;
Ding, Michael S. ;
Zheng, Jianming ;
Cartmell, Samuel S. ;
Wang, Chong-Min ;
Xu, Kang ;
Zhang, Ji-Guang ;
Xu, Wu .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) :18826-18835
[10]   Designing Low Impedance Interface Films Simultaneously on Anode and Cathode for High Energy Batteries [J].
Liao, Bo ;
Li, Hongying ;
Xu, Mengqing ;
Xing, Lidan ;
Liao, Youhao ;
Ren, Xiubin ;
Fan, Weizhen ;
Yu, Le ;
Xu, Kang ;
Li, Weishan .
ADVANCED ENERGY MATERIALS, 2018, 8 (22)