An index theory for asymptotic motions under singular potentials

被引:4
作者
Barutello, Vivina L. [1 ]
Hu, Xijun [2 ]
Portaluri, Alessandro [3 ]
Terracini, Susanna [1 ]
机构
[1] Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Univ Torino, DISAFA, Largo Paolo Braccini 2, I-10095 Turin, Italy
关键词
Index theory; Maslov index; Spectral flow; Colliding trajectories; Parabolic motions; Homothetic orbits; ELLIPTIC LAGRANGIAN SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; SPECTRAL FLOW; MORSE INDEX; MASLOV INDEX; PARABOLIC TRAJECTORIES; RELATIVE EQUILIBRIA; FREDHOLM OPERATORS; SYMPLECTIC PATHS; LINEAR-STABILITY;
D O I
10.1016/j.aim.2020.107230
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop an index theory for parabolic and collision solutions to the classical n-body problem and we prove sufficient conditions for the finiteness of the spectral index valid in a large class of trajectories ending with a total collapse or expanding with vanishing limiting velocities. Both problems suffer from a lack of compactness and can be brought in a similar form of a Lagrangian System on the half time line by a regularising change of coordinates which preserve the Lagrangian structure. We then introduce a Maslov-type index which is suitable to capture the asymptotic nature of these trajectories as half-clinic orbits: by taking into account the underlying Hamiltonian structure we define the appropriate notion of geometric index for this class of solutions and we develop the relative index theory. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:57
相关论文
共 53 条
[1]   Ordinary differential operators in Hilbert spaces and Fredholm pairs [J].
Abbondandolo, A ;
Majer, P .
MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (03) :525-562
[2]  
Abbondandolo A., 2001, MORSE THEORY HAMILTO
[3]  
[Anonymous], 1980, GRUNDLEHREN MATH WIS
[4]  
[Anonymous], 1969, PUBL MATH I HAUT ETU, DOI DOI 10.1007/BF02684885
[5]  
[Anonymous], 2014, Convex Optimiza- tion
[6]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[7]   Morse index properties of colliding solutions to the N-body problem [J].
Barutello, Vivina ;
Secchi, Simone .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :539-565
[8]   Morse Index and Linear Stability of the Lagrangian Circular Orbit in a Three-Body-Type Problem Via Index Theory [J].
Barutello, Vivina ;
Jadanza, Riccardo D. ;
Portaluri, Alessandro .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (01) :387-444
[9]   On the Singularities of Generalized Solutions to n-Body-Type Problems [J].
Barutello, Vivina ;
Ferrario, Davide L. ;
Terracini, Susanna .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[10]   Entire parabolic trajectories as minimal phase transitions [J].
Barutello, Vivina ;
Terracini, Susanna ;
Verzini, Gianmaria .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :391-429