Finite-key analysis for round-robin-differential-phase-shift quantum key distribution

被引:3
作者
Liu, Hang [1 ,2 ]
Yin, Zhen-Qiang [1 ,2 ]
Wang, Rong [1 ,2 ]
Lu, Feng-Yu [1 ,2 ]
Wang, Shuang [1 ,2 ]
Chen, Wei [1 ,2 ]
Huang, Wei [1 ,2 ]
Xu, Bing-Jie [3 ]
Guo, Guang-Can [3 ]
Han, Zheng-Fu [1 ,2 ]
机构
[1] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] State Key Lab Cryptol, POB 5159, Beijing 100878, Peoples R China
[3] Inst Southwestern Commun, Sci & Technol Commun Secur Lab, Chengdu 610041, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum cryptography;
D O I
10.1364/OE.391924
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Since the round-robin-differential-phase-shift (RRDPS) quantum key distribution (QKD) protocol was proposed, it has attracted much attention due to its unique characteristic i.e., it can bind the amount of information leakage without monitoring signal disturbance. Recently, Yin et al. have developed a novel theory to estimate its information leakage tightly. However, the finite-sized key effects are not taken into account. Here, we fill this gap and extend the security proof of the RRDPS protocol to the finite-sized regime using post-selection technique. As a consequence, it's predicted that the key rate of RRDPS in a finite-sized key scenario can be comparable to the asymptotic one, which is meaningful for the real-life applications. (c) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:15416 / 15423
页数:8
相关论文
共 35 条
  • [21] Composability in quantum cryptography
    Mueller-Quade, Joern
    Renner, Renato
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [22] Field test of quantum key distribution in the Tokyo QKD Network
    Sasaki, M.
    Fujiwara, M.
    Ishizuka, H.
    Klaus, W.
    Wakui, K.
    Takeoka, M.
    Miki, S.
    Yamashita, T.
    Wang, Z.
    Tanaka, A.
    Yoshino, K.
    Nambu, Y.
    Takahashi, S.
    Tajima, A.
    Tomita, A.
    Domeki, T.
    Hasegawa, T.
    Sakai, Y.
    Kobayashi, H.
    Asai, T.
    Shimizu, K.
    Tokura, T.
    Tsurumaru, T.
    Matsui, M.
    Honjo, T.
    Tamaki, K.
    Takesue, H.
    Tokura, Y.
    Dynes, J. F.
    Dixon, A. R.
    Sharpe, A. W.
    Yuan, Z. L.
    Shields, A. J.
    Uchikoga, S.
    Legre, M.
    Robyr, S.
    Trinkler, P.
    Monat, L.
    Page, J. -B.
    Ribordy, G.
    Poppe, A.
    Allacher, A.
    Maurhart, O.
    Laenger, T.
    Peev, M.
    Zeilinger, A.
    [J]. OPTICS EXPRESS, 2011, 19 (11): : 10387 - 10409
  • [23] Practical quantum key distribution protocol without monitoring signal disturbance
    Sasaki, Toshihiko
    Yamamoto, Yoshihisa
    Koashi, Masato
    [J]. NATURE, 2014, 509 (7501) : 475 - +
  • [24] Finite-key security against coherent attacks in quantum key distribution
    Sheridan, Lana
    Le, Thinh Phuc
    Scarani, Valerio
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [25] Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors
    Takesue, Hiroki
    Nam, Sae Woo
    Zhang, Qiang
    Hadfield, Robert H.
    Honjo, Toshimori
    Tamaki, Kiyoshi
    Yamamoto, Yoshihisa
    [J]. NATURE PHOTONICS, 2007, 1 (06) : 343 - 348
  • [26] Takesue H, 2015, NAT PHOTONICS, V9, P827, DOI [10.1038/nphoton.2015.173, 10.1038/NPHOTON.2015.173]
  • [27] Thew RT, 2006, NEW J PHYS, V8, DOI 10.1088/1367-2630/8/3/032
  • [28] Tight finite-key analysis for quantum cryptography
    Tomamichel, Marco
    Lim, Charles Ci Wen
    Gisin, Nicolas
    Renner, Renato
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [29] Wang S, 2015, NAT PHOTONICS, V9, P832, DOI [10.1038/nphoton.2015.209, 10.1038/NPHOTON.2015.209]
  • [30] 2 GHz clock quantum key distribution over 260 km of standard telecom fiber
    Wang, Shuang
    Chen, Wei
    Guo, Jun-Fu
    Yin, Zhen-Qiang
    Li, Hong-Wei
    Zhou, Zheng
    Guo, Guang-Can
    Han, Zheng-Fu
    [J]. OPTICS LETTERS, 2012, 37 (06) : 1008 - 1010