Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology

被引:27
|
作者
Marucci, Lucia [1 ,2 ,3 ]
Barberis, Matteo [4 ,5 ,6 ]
Karr, Jonathan [7 ]
Ray, Oliver [8 ]
Race, Paul R. [3 ,9 ]
Andrade, Miguel de Souza [10 ,11 ]
Grierson, Claire [3 ,12 ]
Hoffmann, Stefan Andreas [13 ]
Landon, Sophie [1 ,3 ]
Rech, Elibio [10 ]
Rees-Garbutt, Joshua [3 ,12 ]
Seabrook, Richard [14 ]
Shaw, William [15 ]
Woods, Christopher [3 ,16 ]
机构
[1] Univ Bristol, Dept Engn Math, Bristol, Avon, England
[2] Univ Bristol, Sch Cellular & Mol Med, Bristol, Avon, England
[3] Univ Bristol, Bristol Ctr Synthet Biol BrisSynBio, Bristol, Avon, England
[4] Univ Surrey, Fac Hlth & Med Sci, Sch Biosci & Med, Syst Biol, Guildford, Surrey, England
[5] Univ Surrey, Ctr Math & Computat Biol, CMCB, Guildford, Surrey, England
[6] Univ Amsterdam, Swammerdam Inst Life Sci, Synthet Syst Biol & Nucl Org, Amsterdam, Netherlands
[7] Icahn Sch Med Mt Sinai, Icahn Inst Data Sci & Genom Technol, Dept Genet & Genom Sci, New York, NY 10029 USA
[8] Univ Bristol, Dept Comp Sci, Bristol, Avon, England
[9] Univ Bristol, Sch Biochem, Bristol, Avon, England
[10] Brazilian Agr Res Corp, Natl Inst Sci & Technol Synthet Biol, Brasilia, DF, Brazil
[11] Univ Brasilia, Inst Biol Sci, Dept Cell Biol, Brasilia, DF, Brazil
[12] Univ Bristol, Sch Biol Sci, Bristol, Avon, England
[13] Univ Manchester, Manchester Inst Biotechnol, Manchester, Lancs, England
[14] Univ Bristol, Elizabeth Blackwell Inst Hlth Res EBI, Bristol, Avon, England
[15] Imperial Coll London, Dept Bioengn, London, England
[16] Univ Bristol, Sch Chem, Bristol, Avon, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 美国国家卫生研究院; 欧盟地平线“2020”;
关键词
whole-cell models; synthetic biology; systems biology; multiscale models; bioengineering; biodesign; ESCHERICHIA-COLI; MINIMAL MODELS; NETWORK; METABOLISM; PRINCIPLES; RESOURCE; DYNAMICS; GROWTH; CYCLE; BIOCHEMISTRY;
D O I
10.3389/fbioe.2020.00942
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Computer-aided design (CAD) for synthetic biology promises to accelerate the rational and robust engineering of biological systems. It requires both detailed and quantitative mathematical and experimental models of the processes to (re)design biology, and software and tools for genetic engineering and DNA assembly. Ultimately, the increased precision in the design phase will have a dramatic impact on the production of designer cells and organisms with bespoke functions and increased modularity. CAD strategies require quantitative models of cells that can capture multiscale processes and link genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale models could transform design-build-test-learn cycles in synthetic biology. We show how these models could significantly aid in the design and learn phases while reducing experimental testing by presenting case studies spanning from genome minimization to cell-free systems. We also discuss several challenges for the realization of our vision. The possibility to describe and build whole-cellsin silicooffers an opportunity to develop increasingly automatized, precise and accessible CAD tools and strategies.
引用
收藏
页数:11
相关论文
共 22 条