An improved method for nonlinear parameter estimation: a case study of the Rossler model

被引:6
作者
He, Wen-Ping [1 ]
Wang, Liu [2 ]
Jiang, Yun-Di [1 ]
Wan, Shi-Quan [3 ]
机构
[1] China Meteorol Adm, Natl Climate Ctr, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Yangzhou Meteorol Off, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSITIVITY-ANALYSIS; DATA ASSIMILATION; CLIMATE; SCHEME; STATE;
D O I
10.1007/s00704-015-1528-5
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system-Rossler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.
引用
收藏
页码:521 / 528
页数:8
相关论文
共 50 条
  • [41] Accurate state and parameter estimation in nonlinear systems with sparse observations
    Rey, Daniel
    Eldridge, Michael
    Kostuk, Mark
    Abarbanel, Henry D. I.
    Schumann-Bischoff, Jan
    Parlitz, Ulrich
    PHYSICS LETTERS A, 2014, 378 (11-12) : 869 - 873
  • [42] An efficient parameter estimation method for nonlinear high-order systems via surrogate modeling and cuckoo search
    Lai, Xuefang
    Wang, Xiaolong
    Nie, Yufeng
    He, Xingshi
    SOFT COMPUTING, 2020, 24 (22) : 17065 - 17079
  • [43] Dynamic Energy Budget model parameter estimation for the bivalve Mytilus californianus: Application of the covariation method
    Matzelle, A.
    Montalto, V.
    Sara, G.
    Zippay, M.
    Helmuth, B.
    JOURNAL OF SEA RESEARCH, 2014, 94 : 105 - 110
  • [44] Estimation of parameter uncertainty for an activated sludge model using Bayesian inference: a comparison with the frequentist method
    Zonta, Zivko J.
    Flotats, Xavier
    Magri, Albert
    ENVIRONMENTAL TECHNOLOGY, 2014, 35 (13) : 1618 - 1629
  • [45] A new mathematical modelling and parameter estimation of COVID-19: a case study in Iraq
    Yavuz, Mehmet
    Haydar, Waled Yaviz Ahmed
    AIMS BIOENGINEERING, 2022, 9 (04): : 420 - 446
  • [46] The Model Calibration Protocol for Parameter Estimation of Activated Sludge Model
    Lee, Won-Young
    Kim, Min-Han
    Yoo, Chang Kyoo
    2008 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-4, 2008, : 2266 - 2271
  • [47] Test models for improving filtering with model errors through stochastic parameter estimation
    Gershgorin, B.
    Harlim, J.
    Majda, A. J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (01) : 1 - 31
  • [48] Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply-Demand Algorithm
    El-Sehiemy, Ragab
    Hamida, Mohamed A.
    Elattar, Ehab
    Shaheen, Abdullah
    Ginidi, Ahmed
    ENERGIES, 2022, 15 (13)
  • [49] A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model
    Wu, Xinrong
    Zhang, Shaoqing
    Liu, Zhengyu
    Rosati, Anthony
    Delworth, Thomas L.
    CLIMATE DYNAMICS, 2013, 40 (7-8) : 1789 - 1798
  • [50] Parameter Estimation and Its Application on Designing Adaptive Nonlinear Model Based Control Schemes for the Time Varying System
    Banerjee, S.
    Panda, A.
    Pandey, I
    Bhowmick, P.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2022, 56 (04) : 324 - 336