An improved method for nonlinear parameter estimation: a case study of the Rossler model

被引:6
作者
He, Wen-Ping [1 ]
Wang, Liu [2 ]
Jiang, Yun-Di [1 ]
Wan, Shi-Quan [3 ]
机构
[1] China Meteorol Adm, Natl Climate Ctr, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Yangzhou Meteorol Off, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSITIVITY-ANALYSIS; DATA ASSIMILATION; CLIMATE; SCHEME; STATE;
D O I
10.1007/s00704-015-1528-5
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system-Rossler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.
引用
收藏
页码:521 / 528
页数:8
相关论文
共 50 条
  • [21] Optimized parameter estimation of a PEMFC model based on improved Grass Fibrous Root Optimization Algorithm
    Guo, Haibing
    Tao, Hai
    Salih, Sinan Q.
    Yaseen, Zaher Mundher
    ENERGY REPORTS, 2020, 6 : 1510 - 1519
  • [22] Auto-regressive model based input and parameter estimation for nonlinear finite element models
    Castiglione, Juan
    Astroza, Rodrigo
    Azam, Saeed Eftekhar
    Linzell, Daniel
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 143
  • [23] An improved thermal single particle model and parameter estimation for high-capacity battery cell
    Hong, Changbeom
    Cho, Hyeonwoo
    Hong, Daeki
    Oh, Se-Kyu
    Kim, Yeonsoo
    ELECTROCHIMICA ACTA, 2023, 439
  • [24] Robust parameter estimation in nonlinear dynamic process models
    Rodríguez-Fernández, M
    Alonso, AA
    Banga, JR
    EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING-15, 20A AND 20B, 2005, 20a-20b : 37 - 42
  • [25] Parameter set selection for estimation of nonlinear dynamic systems
    Chu, Yunfei
    Hahn, Juergen
    AICHE JOURNAL, 2007, 53 (11) : 2858 - 2870
  • [26] Optimal spatial sampling scheme for parameter estimation of nonlinear distributed parameter systems
    Alana, Jorge E.
    Theodoropoulos, Constantinos
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 45 : 38 - 49
  • [27] Distributed simultaneous state and parameter estimation of nonlinear systems
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jianbang
    Liu, Jinfeng
    Ding, Feng
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 181 : 74 - 86
  • [28] Parameter estimation in a multidimensional granulation model
    Braumann, Andreas
    Kraft, Markus
    Mort, Paul R.
    POWDER TECHNOLOGY, 2010, 197 (03) : 196 - 210
  • [29] A Bayesian parameter estimation method applied to a marine ecosystem model for the coastal Gulf of Alaska
    Fiechter, J.
    Herbei, R.
    Leeds, W.
    Brown, J.
    Milliff, R.
    Wikle, C.
    Moore, A.
    Powell, T.
    ECOLOGICAL MODELLING, 2013, 258 : 122 - 133
  • [30] A Sliding Mode Observer SOC Estimation Method Based on Parameter Adaptive Battery Model
    Ning, Bo
    Xu, Jun
    Cao, Binggang
    Wang, Bin
    Xu, Guangcan
    CUE 2015 - APPLIED ENERGY SYMPOSIUM AND SUMMIT 2015: LOW CARBON CITIES AND URBAN ENERGY SYSTEMS, 2016, 88 : 619 - 626