An improved method for nonlinear parameter estimation: a case study of the Rossler model

被引:6
|
作者
He, Wen-Ping [1 ]
Wang, Liu [2 ]
Jiang, Yun-Di [1 ]
Wan, Shi-Quan [3 ]
机构
[1] China Meteorol Adm, Natl Climate Ctr, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Yangzhou Meteorol Off, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSITIVITY-ANALYSIS; DATA ASSIMILATION; CLIMATE; SCHEME; STATE;
D O I
10.1007/s00704-015-1528-5
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system-Rossler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.
引用
收藏
页码:521 / 528
页数:8
相关论文
共 50 条
  • [1] Research and application of parameter estimation method in hydrological model based on dual ensemble Kalman filter
    Lu, Mengtian
    Lu, Sicheng
    Liao, Weihong
    Lei, Xiaohui
    Yin, Zhaokai
    Wang, Hao
    HYDROLOGY RESEARCH, 2022, 53 (01): : 65 - 84
  • [2] Time delay and model parameter estimation for nonlinear system with simultaneous approach
    Liu, Benyi
    Chen, Weifeng
    JOURNAL OF PROCESS CONTROL, 2024, 139
  • [3] Systematic variational method for statistical nonlinear state and parameter estimation
    Ye, Jingxin
    Rey, Daniel
    Kadakia, Nirag
    Eldridge, Michael
    Morone, Uriel I.
    Rozdeba, Paul
    Abarbanel, Henry D. I.
    Quinn, John C.
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [4] Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems
    Bisaillon, Philippe
    Sandhu, Rimple
    Khalil, Mohammad
    Pettit, Chris
    Poirel, Dominique
    Sarkar, Abhijit
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1061 - 1080
  • [5] PARAMETER ESTIMATION OF NONLINEAR OUTPUT ERROR SYSTEM UNDER VARIATIONAL BAYESIAN METHOD BASED ON PROBABILISTIC GRAPHICAL MODEL
    Du, Yiping
    Katib, Iyad
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (02)
  • [6] A Study on Coaxial Quadrotor Model Parameter Estimation: an Application of the Improved Square Root Unscented Kalman Filter
    Goslinski, Jaroslaw
    Kasinski, Andrzej
    Giernacki, Wojciech
    Owczarek, Piotr
    Gardecki, Stanislaw
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 95 (02) : 491 - 510
  • [7] Simple method for parameter identification of a nonlinear Greitzer compressor model
    Backi, Christoph Josef
    Gravdahl, Jan Tommy
    Skogestad, Sigurd
    IFAC PAPERSONLINE, 2018, 51 (13): : 198 - 203
  • [8] A multiscale method for model order reduction in PDE parameter estimation
    Fung, Samy Wu
    Ruthotto, Lars
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 350 : 19 - 34
  • [9] A two-stage inflation method in parameter estimation to compensate for constant parameter evolution in Community Earth System Model
    Shen, Zheqi
    Tang, Youmin
    ACTA OCEANOLOGICA SINICA, 2022, 41 (02) : 91 - 102
  • [10] A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China
    Wang, Yulin
    Chen, Haomiao
    Wang, Liang
    Hua, Zulin
    He, Chengda
    Cheng, Jilin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (17) : 20934 - 20949